Pacific Journal of Mathematics

Relations not determining the structure of ${\rm L}$.

John Rosenthal

Article information

Source
Pacific J. Math., Volume 37, Number 2 (1971), 497-514.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102970622

Mathematical Reviews number (MathSciNet)
MR0304160

Zentralblatt MATH identifier
0214.01502

Subjects
Primary: 02H15
Secondary: 02K99

Citation

Rosenthal, John. Relations not determining the structure of ${\rm L}$. Pacific J. Math. 37 (1971), no. 2, 497--514. https://projecteuclid.org/euclid.pjm/1102970622


Export citation

References

  • [1] Addison, Henkin, and Tarski (eds.) Theory of Models, North Holland, 1965.
  • [2] Every W. Beth, On Padua'sMethod in the theory of definition,Nederl. Akad. Wetensch. Proc. (A) 56 (1953), 330-339.
  • [3] J. R. Buchi, Relatively categorical and normal theories in Addison, Henkin, Tarski (eds.), The Theory of Models, 65.
  • [4] J. R. Buchi and K. J. Darhof, A strong form of Beth's DefinabilityTheorem, Notices Amer. Math. Soc. 15 (1968), 932.
  • [5] John Doner, Thesis 1968, unpublished, University of California at Berekeley.
  • [6] J. Doner and A. Tarksi, An extended Arithmetic of ordinal numbers, mimeographed notes.
  • [7] A. Ehrenfeucht, An application of games to the completeness problem forformalized theories, Fund. Math. 49 (1961), 129-141.
  • [8] K. Godel, The Consistency of the Continuum Hypothesis, Princeton University Press, 1940.
  • [9] A. Mostowski and A. Tarski, Bull. Amer. Math. Soc. 55 (1949-50), 65.
  • [10] J. Myhill, The hypothesis that all classes are nameable, PNAS 38 (1952).
  • [11] A. Robinson, Introductionto Model Theory and to the Metamathematics of Algebra, North Holland, 1963.
  • [12] J. Robinson, Definabilityand decision problems in arithmetic,J. Symbolic Logic 14 (1949), 98-114.
  • [13] Hartley Rogers, Jr., Theory of Recursive Functionsand EffectiveComputability, McGraw Hill, 1967.
  • [14] J. Rosenthal, Thesis Part I, 1968, unpublished. M. I. T.
  • [15] Schoenfield, Mathematical Logic, Addison Wesley, 1967.
  • [16] G. Takeuti, A formalizationof the theory of ordinal numbers, J. Symbolic Logic 30 (1965).
  • [17] A. Tarski, Der Wahrheitsbeitsbegriffin den formalisiertenSprach,Studia Phi- losophica 1 (1935), 261-405.