Pacific Journal of Mathematics

Algebraic structure for a set of nonlinear integral operations.

David Lowell Lovelady

Article information

Source
Pacific J. Math., Volume 37, Number 2 (1971), 421-427.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102970615

Mathematical Reviews number (MathSciNet)
MR0303348

Zentralblatt MATH identifier
0214.37103

Subjects
Primary: 47D05
Secondary: 47H99: None of the above, but in this section

Citation

Lovelady, David Lowell. Algebraic structure for a set of nonlinear integral operations. Pacific J. Math. 37 (1971), no. 2, 421--427. https://projecteuclid.org/euclid.pjm/1102970615


Export citation

References

  • [1] P. R. Chernoff, Note on product formulas for operator semigroups,J. Functional Analysis, 2 (1968), 238-242.
  • [2] P. R. Chernoff, Semigroup product formulas and addition of unbounded operators, Bull. Amer. Math. Soc, 76 (1970), 395-398.
  • [3] B. W. Helton, Integral equations and product integrals, Pacific J. Math., 16 (1966), 297-322.
  • [4] J. V. Herod, Multiplicative inverses of solutions for Volterra-Stieltjesintegral equ- ations, Proc. Amer. Math. Soc, 22 (1969), 650-656.
  • [5] J. V. Herod, Coalescence of solutions for nonlinear Volterra equations, Notices Amer. Math. Soc, 16 (1969), 834.
  • [6] J. V. Herod, Coalescence of solutions for nonlinear Stieltjes equations, J. Rene Angew. Math., (to appear).
  • [7] D. L. Lovelady, Perturbations of solutions of Stieltjes integral equations, Trans. Amer. Math. Soc, 155 (1971), 175-188.
  • [8] J. S. Mac Nerney, Integral equations and semigroups, Illinois J. Math., 7 (1963), 148-173.
  • [9] J. S. Mac Nerney, A nonlinear integral operation, Illinois J. Math., 8 (1964), 621-638.
  • [10] J. L. Mermin, Accretive operators and nonlinear semigroups, Ph. D. Thesis, Uni- versity of California, Berkeley (1968).
  • [11] H. F. Trotter, On the product of semigroups of operators, Proc Amer. Math. Soc, 10 (1959),545-551.