Pacific Journal of Mathematics

Nuclear spaces, Schauder bases, and Choquet simplexes.

A. J. Lazar and J. R. Retherford

Article information

Source
Pacific J. Math., Volume 37, Number 2 (1971), 409-419.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102970614

Mathematical Reviews number (MathSciNet)
MR0308730

Zentralblatt MATH identifier
0213.39202

Subjects
Primary: 46A35: Summability and bases [See also 46B15]
Secondary: 46A15

Citation

Lazar, A. J.; Retherford, J. R. Nuclear spaces, Schauder bases, and Choquet simplexes. Pacific J. Math. 37 (1971), no. 2, 409--419. https://projecteuclid.org/euclid.pjm/1102970614


Export citation

References

  • [1] C. Bessaga and J. R. Retherford, Lectures on Nuclear Spaces, Lecture NotesLSU, 1967 (Manuscript to appear).
  • [2] Ja. M. Ceitlin, Unconditionality of a basis and partial order, (Russian) Izv. Vyss. Ucebn. Zaued. Matematika 1966 No. 2 (51) 98-104.
  • [3] G. Choquet, Existence et unicite de representations integrales au moyen des points extremaux dans les cones convexes, Seminaire Bourbaki (Dec. 1956), 139, 15 pp.
  • [4] M. M. Day, Normed linear spaces, Springer-Verlag, Berlin, 1962.
  • [5] J. Dieudonne, On biorthogonal systems, Michigan Math. J., 2 (1953/1954), 7-20.
  • [6] N. Dunford and J. T. Schwartz, Linear Operator, Part 1. New York: Interscience Publ. Inc.1958.
  • [7] A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci., (USA) Vol. 36, No. 3 (1950), 192-197.
  • [8] A. S. Dynin and B. S. Mitiagin, Criterion for nuclearity in terms of approximative dimension, Bull. Acad. Polon. Sci., 8 (1960), 535-540.
  • [9] A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Memoirs of Amer. Math. Soc, (1955), No. 16.
  • [10] A. Grothendieck, Resume des resultats essentiels dans la theorie des produitstensoriels topologiques, Bol. Soc. Matem. Sao Paulo 8 (1956), 1-79.
  • [11] V. Klee, On the Borelian and protective types of linear subspaces, Math. Scand., 6 (1958), 189-199.
  • [12] Y. Kmura and T. Kmura, Uber de eibettung der nuklearern Rdume in (s)A, Math. Annalean, 162 (1966), 284-288.
  • [13] Y. Kmura and S. Koshi, Nuclear Vector lattices, Math. Annalen, 163 (1966), 105-110.
  • [14] G. Kthe, Uber nucleare folgenraume, Studia Math., 31 (1968), 267-271.
  • [15] G. Kthe, Topological Vector Spaces I, Springer-Verlag Berlin 1969 (Trans, of Topologische linear Raume 1960).
  • [16] S. Kakutani, Concrete representation of abstract (L)-spaces and the mean ergodic theorem, Ann. of Math., (2) 42 (1941), 523-537. yjt^ Concrete representationof abstract (M)-spaces, Ann. of Math., (2) 42 (1941), 994-1024.
  • [18] A. Lazar, Sections and subsets of simplexes, Pacific J. Math., 33 (1970), 337-345.
  • [19] A. Markouchevitch, Sur les bases (au sens large) dans les espaces lineaires, C.R. (Doklady) Acad. Sci. URSS (N.S.) 41 (1943), 227-229.
  • [20] C. W. McArthur and J. R. Retherford, Some remarks on bases in linear topological spaces, Math. Ann., 247 (1966), 38-41.
  • [21] C. W. McArthur and J. R. Retherford, Some Applicationsof an inequality in locally convex spaces, Trans. Amer. Math. Soc, 137 (1969), 115-123.
  • [22] B. S. Mitiagin, Approximativedimension and bases in nuclear spaces (Russian) USP. Mat. Nauk 16, 4 (100) (1961), 63-132 (English translation:Russian Math. Surveys 16 (1961) 9, 59-127.)
  • [23] A. Petczynski and I. Singer, On non-equivalent bases and conditional bases in Banach spaces, Studia. Matn., 25 (1964) 5-25.
  • [24] A. J. Peressini, Ordered topological vector spaces, Harper and Row, New York 1967.
  • [25] R. R. Phelps, Lectures on Choquet's Theorem, Van Nostrand, Princeton, N. J. 1966.
  • [26] A. Pietsch, Nukleare lokalkonvexe Raume, Akademie-Verlag Berlin 1965.
  • [27] J. R. Retherford, Notes on the Dynin-Mitiagin theorem, Lecture Notes LSU.
  • [28] J. R. Retherford, Schauderbases and Kthe sequence spaces, Trans. Amer. Math. Soc, 130 (1968), 265-280.
  • [29] W. Woztynski, Conditional bases in non-nuclear Frechet spaces Studia Math., 35 (1970), 77-96.