Pacific Journal of Mathematics

Inversion of the Hankel potential transform.

Frank M. Cholewinski and Deborah Tepper Haimo

Article information

Source
Pacific J. Math., Volume 37, Number 2 (1971), 319-330.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102970606

Mathematical Reviews number (MathSciNet)
MR0304985

Zentralblatt MATH identifier
0216.15103

Subjects
Primary: 44A15: Special transforms (Legendre, Hilbert, etc.)

Citation

Cholewinski, Frank M.; Haimo, Deborah Tepper. Inversion of the Hankel potential transform. Pacific J. Math. 37 (1971), no. 2, 319--330. https://projecteuclid.org/euclid.pjm/1102970606


Export citation

References

  • [1] A. Erdelyi et al Higher transcendental functions,vol. 1, McGraw-Hill, New York, 1958.
  • [2] I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Analyse Math. 8 (1960-61), 307-336.
  • [3] B. Muckenhaupt and E. M. Stein, Classical expansions and their relation tocon- jugate harmonic functions, Trans. Amer. Math. Soc, 118 (1965), 17-92.
  • [4] A. Weinstein, Generalized axially symmetricpotential theory, Bull. Amer. Math. Soc, 59 (1953), 20-38.
  • [5] D. V. Widder, The Laplace transform,Princeton Univ. Press. Princeton, New Jersey, 1941.
  • [6] D. V. Widder, A transform related to the Poisson integral for a half plane, Duke Math. J. 33 (1966), 355-362.
  • [7] D. V. Widder, Inversion of a convolution transform by use of series, J. Analyse Math. 19 (1968), 293-312.