Pacific Journal of Mathematics

Semi-developable spaces and quotient images of metric spaces.

Charles C. Alexander

Article information

Source
Pacific J. Math., Volume 37, Number 2 (1971), 277-293.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102970603

Mathematical Reviews number (MathSciNet)
MR0313991

Zentralblatt MATH identifier
0216.19303

Subjects
Primary: 54D20: Noncompact covering properties (paracompact, Lindelöf, etc.)

Citation

Alexander, Charles C. Semi-developable spaces and quotient images of metric spaces. Pacific J. Math. 37 (1971), no. 2, 277--293. https://projecteuclid.org/euclid.pjm/1102970603


Export citation

References

  • [1] P. S. Alexandrov and V. V. Niemytskii, Metrizabilityconditions for topological spaces and the axiom of symmetry,Mat.Sb. 3 (1938), 663-672.
  • [2] A. V. Arhangeskii, Some types of factor mappings,and the relations between classes of topological spaces, Dokl. Akad. Nauk SSSR 153 (1963), 743-746; Soviet Math. Dokl. 4 (1963), 1726-1729.
  • [3] A. V. Arhangeskii,Mappings and spaces, Uspekhi Mat.Nauk. 21 (1966), 133;Russian Math. Surveys 21 (1966), 115-162.
  • [4] R. H. Bing, Metrizationof topological spaces, Canadian J. Math., 3 (1951), 175-186.
  • [5] Morton Brown, Semi-metric spaces, Summer Institute on Set Theoretic Topology, Madison, Wisconsin, Amer. Math. Soc, (1955), 62-64.
  • [6] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961), 105-126.
  • [7] S. P. Franklin, Spaces in which sequences suffice, Fund. Math., 57 (1965), 107-115.
  • [8] A. H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc, 43 (1937), 133-142.
  • [9] R. W. Heath, A regular semi-metric space for which there is no semi-metric under which all spheres are open, Proc. Amer. Math. Soc, 12 (1961), 810-811.
  • [10] R. W. Heath, Arc-wise connectedness in semi-metric spaces, Pacific J. Math., 12 (1962), 1301-1319.
  • [11] R. W. Heath, On open mappings and certain spaces satisfying the first countability axiom, Fund. Math., 57 (1965), 91-96.
  • [12] J. L. Kelley, General Topology, Van Nostrand, Princeton, N. J., 1955.
  • [13] L. F. McAuley, A relation between perfect separability, completeness and normality in semi-metric spaces, Pacific J. Math., 6 (1956), 315-326.
  • [14] L. F. McAuley, A note on complete collectionivise normality and paracompactness, Proc. Amer. Math. Soc, 9 (1958), 796-799.
  • [15] P. McDougle, A theorem on quasi-compact mappings,Proc. Amer. Math. Soc, 9 (1958), 474-477.
  • [16] V. I. Ponomarev, Axioms of countabilityand continuous mappings,Bull. Pol. Akad. Nauk., 8 (1960), 127-134.
  • [17] Yu. M. Smirnov, On metrizationof topological spaces, Uspekhi Mat. Nauk. 6 (1951); Amer. Math. Soc Translation no. 91 (1953).
  • [18] Din' N' e T'ong, Preclosed mappings and Taimanov's theorem, Dokl. Akad, Nauk. SSSR 152 (1963) 525-528; Soviet Math. Dokl. 4 (1963), 1335-1338.