Pacific Journal of Mathematics

Totally real representations and real function spaces.

Calvin C. Moore and Joseph A. Wolf

Article information

Source
Pacific J. Math., Volume 38, Number 2 (1971), 537-542.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102970065

Mathematical Reviews number (MathSciNet)
MR0310130

Zentralblatt MATH identifier
0227.43008

Subjects
Primary: 22D10: Unitary representations of locally compact groups
Secondary: 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05} 43A65: Representations of groups, semigroups, etc. [See also 22A10, 22A20, 22Dxx, 22E45]

Citation

Moore, Calvin C.; Wolf, Joseph A. Totally real representations and real function spaces. Pacific J. Math. 38 (1971), no. 2, 537--542. https://projecteuclid.org/euclid.pjm/1102970065


Export citation

References

  • [1] E. Cartan, Sur la determinationd'un systeme orthogonal complet dans un espace de Eiemann symmetriqueclos, Rend. Circ. Mat. Palermo 53 (1929),1-36.
  • [2] I. M.Gelfand, Spherical functionson symmetric spacesy Doklady USSR, 70 (1950), 5-8.
  • [3] A. Kleppner, Representationsinduced from compact subgroups, Amer. J. Math., 88 (1966), 544-552.
  • [4] K. de Leeuw, and H. Mirkil, Rotation-invariantalgebras on the n-sphere, Duke Math. J., 30 (1963), 667-672.
  • [5] G. W. Mackey, On induced representations of groups, Amer. J. Math., 73 (1951), 576-592.
  • [6] G. W. Mackey, Symmetric and antisymmetricKronecker squares and intertwiningnum- bers of induced representations of finite groups, Amer. J. Math., 75 (1953), 387-405.
  • [7] I. E. Segal, The two sided regular representation of a unimodular locally compact group, Annals of Math., 51 (1950), 293-298.
  • [8] A. Selberg, Harmonicanalysis and discontinuousgroups in weaklysymmetric spaces, J. Indian Math. Soc, 20 (1956), 47-87.
  • [9] J. A. Tirao, Self adjoint functionspaces on Riemanniansymmetricmanifolds, Proc. Amer. Math. Soc, 24 (1970), 223-228.
  • [10] E. P. Wigner, On representations of certain finite groups, Amer. J. Math., 73 (1941), 57-63.
  • [11] E. P. Wigner,Condition that the irreducible representations of a group, considered as representations of a subgroup, do not contain any representation of the subgroup more than once, "Spectroscopic and Group Theoretical Methods in Physics," Wiley, New York, 1968.
  • [12] J. A. Wolf, Self-adjointfunctionspaces on Riemanniansymmetricmanifolds, Trans. Amer. Math. Soc, 113 (1964), 299-315.
  • [13] J. A. Wolf, Spaces of Constant Curvature, McGraw Hill, New York, 1967.