Pacific Journal of Mathematics

A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer.

Constantine G. Lascarides

Article information

Source
Pacific J. Math., Volume 38, Number 2 (1971), 487-500.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102970060

Mathematical Reviews number (MathSciNet)
MR0306768

Zentralblatt MATH identifier
0237.46017

Subjects
Primary: 40H05: Functional analytic methods in summability

Citation

Lascarides, Constantine G. A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer. Pacific J. Math. 38 (1971), no. 2, 487--500. https://projecteuclid.org/euclid.pjm/1102970060


Export citation

References

  • [1] V. Ganapathy Iyer, On the space of integral functions--7,J. Indian Math. Soc, (2) 12 (1948), 13-30.
  • [2] I. Halperin--H. Nakano, Generalized lp spaces and the Schur property. J. Math. Soc. of Japan, (5) 1 (1953), 50-58.
  • [3] C. G. Lascarides--I. J. Maddox, Matrixtransformationsbetween some classes of sequences, Proc. Cambridge Philos. Soc, 8 (1970), 99-104.
  • [4] I. J. Maddox, Spaces of strongly summable sequences. Quaterly J. Math. Oxford, (2), 18 (1967), 345-355.
  • [5] I. J. Maddox, Paranormedsequence spaces generated by infinitematrices, Proc. Cam-
  • [6] I. J. Maddox, Continuous and Kthe--Toeplitz duals of certain sequence spaces. Proc. Camridge Philos. Soc, 65, (1969) 431-435.
  • [7] I. J. Maddox, Some properties of paranormed sequence spaces. J. London Math. Soc, (2), 1 (1969), 316-322.
  • [8] H. Nakano, Modulared sequence spaces. Proc. Japan Acada., 27 (1951), 508-512.
  • [9] K. Chandrasekhara Rao, Matrixtransformationsof some sequence spaces, Pacific J. Math., 31 (1969), 171-174.
  • [10] S. Simons, The sequence spaces l(p^) and m(pv). Proc. London Math. Soc, (3), 15 (1965), 422-436.

See also

  • Corr : Constantine G. Lascarides. Correction to: ``A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer''. Pacific Journal of Mathematics volume 43, issue 3, (1972), pp. 826-826.