Pacific Journal of Mathematics

A proof of the most general polyhedral Schoenflies conjecture possible.

Leslie C. Glaser

Article information

Source
Pacific J. Math., Volume 38, Number 2 (1971), 401-417.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102970052

Mathematical Reviews number (MathSciNet)
MR0312513

Zentralblatt MATH identifier
0221.57005

Subjects
Primary: 57C45

Citation

Glaser, Leslie C. A proof of the most general polyhedral Schoenflies conjecture possible. Pacific J. Math. 38 (1971), no. 2, 401--417. https://projecteuclid.org/euclid.pjm/1102970052


Export citation

References

  • [1] M. Brown, Locally flat embeddings of topological manifolds,Ann. of Math., 75 (1962), 331-341.
  • [2] J. L. Bryant, and C. L. Seebeck, Locally nice embeddings of polyhedra, Quart. J. Math., Oxford (2) 19 (1968), 257-274.
  • [3] J. C. Cantrell, and R. C. Lacher, Some conditions for manifoldsto be locally flat, (to appear).
  • [4] Marshall M. Cohen, Homeomorphisms between homotopy manifoldsand their resolu- tions, (to appear).
  • [5] E. H. Connell, A topological H-cobordism theorem for n ^ 5, Illinois J. Math., 11 (1967), 300-309.
  • [6] M. L. Curtis, and E. C. Zeeman, On the polyhedral Schoenfliestheorem,Proc. Amer. Math. Soc, 11 (1960), 888-889.
  • [7] Robert D. Edwards, and Robin C. Kirby, Deformationof spaces ofImbeddings, (to appear).
  • [8] L. C. Glaser, On suspensions of homology spheres, (to appear).
  • [9] L. C. Glaser, On the double suspension of certain homotopy S-spheres, Ann. of Math., 85 (1967), 494-507.
  • [10] L. C. Glaser, An elementaryproof that the double suspension of a homotopy 3-cell is a topological 5-cell,(to appear).
  • [11] Robin, C. Kirby, On the set of non-locally flat points of a submanifold of co- dimension one Ann. of Math., 88 (1968), 281-290.
  • [12] Ronald H. Rosen, A note concerning certain subcomplexes of triangulatedmani- folds, Yokohama Math. J., 16 (1968), 5-7.
  • [13] Ronald H. Rosen,Concerning suspension spheres Proc. Amer. Math. Soc, 23 (1969), 225- 231.
  • [14] L. C. Siebenmann, Are non-trianguable manifolds trianguable?, (to appear).
  • [15] J. Stallings, On topologcally unknotted spheres, Ann. of Math., 77 (1963), 490-503.
  • [16] J. Stallings, The piecewise linear structure of Euclideanspace, Proc. Cambridge Philos. Soc, 58 (1962), 481-488.
  • [17] E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math., 78 (1963), 501-526.