Pacific Journal of Mathematics

The polynomial of a non-regular digraph.

W. G. Bridges

Article information

Source
Pacific J. Math., Volume 38, Number 2 (1971), 325-341.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102970045

Mathematical Reviews number (MathSciNet)
MR0317985

Zentralblatt MATH identifier
0233.05111

Subjects
Primary: 05C20: Directed graphs (digraphs), tournaments

Citation

Bridges, W. G. The polynomial of a non-regular digraph. Pacific J. Math. 38 (1971), no. 2, 325--341. https://projecteuclid.org/euclid.pjm/1102970045


Export citation

References

  • [1] W. G. Bridges and H. J. Ryser, Combinatorial designs and related systems, J. Algebra, 13 (1969), 423-446.
  • [2] T. Evans, Products of points--some simple algebras and their identities,Amer, Math. Monthly, 74 (1967), 362-372.
  • [3] A. J. Hoffman, On the polynomial of a graph, Amer. Math. Monthly, 70 (1963), 30-36.
  • [4] A. J. Hoffman and M. H. McAndrew, On the polynomial of a directed graph, Proc. Amer. Math. Soc. 1O (1965), 303-309.
  • [5] A. J. Hoffman and R. R. Singleton, On Moore Graphs of diameter 2 and 3, I.B.M. J. Res. and Dev., 4 (Nov. 1960).
  • [6] D. Knuth, Notes on central groupoids, (to appear).
  • [7] H. J. Ryser, Combinatorial Mathematics(Cams Math. Monograph No. 14, Math. Assoc. Amer.) Wiley, New York, 1963.
  • [8] H. J. Ryser, A generalization of the matrixequation A2 --J, J. Linear Algebra and Applications (to appear).
  • [9] J. J. Seidel, Stronglyregular graphswith (--1,1,0) adjacencymatrixhaving eigenvalue 3, Linear Alg. Applications, 1 (1968), 281-298.
  • [10] J. J. Seidel, Strongly regular graphs of L-type and of triangulartype, Koninkl. Ned. Akad. Wetenschap. Proc. Ser A 70 (1967), 188-196.
  • [11] J. J. Seidel, Strongly regular graphs (Recent Progress in Combinatorics) Academic Press, New York 1969.
  • [12] J. J. Seidel and J. M. Goethals, Strongly regular graphs derived from combina- torial designs, Can. J. Math, (to appear).