Pacific Journal of Mathematics

The congruence extension property for compact topological lattices.

Albert R. Stralka

Article information

Source
Pacific J. Math., Volume 38, Number 3 (1971), 795-802.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102969925

Mathematical Reviews number (MathSciNet)
MR0304259

Zentralblatt MATH identifier
0252.06006

Subjects
Primary: 06A35

Citation

Stralka, Albert R. The congruence extension property for compact topological lattices. Pacific J. Math. 38 (1971), no. 3, 795--802. https://projecteuclid.org/euclid.pjm/1102969925


Export citation

References

  • [1] L. W. Anderson, One dimensional topological lattices, Proc. Amer. Math. Soc, 10 (1959), 715-720.
  • [2] K. A. Baker and A. R. Stralka, Compact, distributivelattices of finite breadth, Pacific J. Math., 34 (1970), 311-320.
  • [3] N. Funayama and T. Nakayama, On the distributivityof a lattice of lattice-con- gruences, Proc. Imp. Acad. Tokyo, 18 (1942), 553-554.
  • [4] G. Gratzer, Lectures on Lattice Theory, Volume 1, W. H. Freeman & Co., San Francisco (to appear).
  • [5] R. P. Hunter and L. W. Anderson, Certain homomorphisms of a compact semigroup onto a thread, J. Austr. Math. Soc, 7 (1967), 311-322.
  • [6] R. J. Koch, Arcs in partially ordered spaces, Pacific J. Math., 9 (1959), 723-728.
  • [7] J. D. Lawson. Topological semilattices with small semilattices, J. London Math. Soc, (2), 1 (1969), 719-724.
  • [8] K. Numakura, Theorems on compact totally disconnected semigroups and lattices, Proc. Amer. Math. Soc, 8 (1957), 623-626.