Pacific Journal of Mathematics

On spaces with regular $G_{\delta}$-diagonals.

Phillip Zenor

Article information

Source
Pacific J. Math., Volume 40, Number 3 (1972), 759-763.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102968575

Mathematical Reviews number (MathSciNet)
MR0307195

Zentralblatt MATH identifier
0232.54020

Subjects
Primary: 54E35: Metric spaces, metrizability

Citation

Zenor, Phillip. On spaces with regular $G_{\delta}$-diagonals. Pacific J. Math. 40 (1972), no. 3, 759--763. https://projecteuclid.org/euclid.pjm/1102968575


Export citation

References

  • [1] P. S. Alexandrov and V. V. Nemitskii, Der allgemarine metrisatienssatzund das symmetrcaxiom,(Russian), Mat. Sbornik, 3 (45) (1938), 663-672.
  • [2] R. H. Bring, Metrization of topological spaces, Canad. J. Math., 3 (1951) 175-186.
  • [3] C. J. R. Borges, On metrizabilityof topological spaces, Canad. J. Math., 20 (1968), 1795-803.
  • [4] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961), 105-125.
  • [5] H. Cook, Cartesian products and continuous semi-metrics, Topology Conference- Arizona State University (1967), 58-63, Tempe, Arizona.
  • [6] R. W. Heath, Metrizability,compactness and paracompactness in Moore spaces, Notices Amer. Math. Soc, 10 (1963), 105.
  • [7] R. E. Hodel, Moore spaces and -spaces, Pacific J. Math., 38 (1971), 641-652.
  • [8] M. Katetov, Complete normalityof cartesian products, Fund, Math., 35 (1948), 271-274.
  • [9] E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc, 4 (1953), 831- 838.
  • [10] K. Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365-382.
  • [11] L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, Holt Rinehart and Winston, Inc., New York, 1970.
  • [12] P. L. Zenor, Countable paracompactnessin product spaces, to appear in Proc. Amer. Math. Soc.