Pacific Journal of Mathematics

Integral inequalities of Wirtinger-type and fourth-order elliptic differential inequalities.

Pui Kei Wong

Article information

Source
Pacific J. Math., Volume 40, Number 3 (1972), 739-751.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102968573

Mathematical Reviews number (MathSciNet)
MR0306686

Zentralblatt MATH identifier
0231.35026

Subjects
Primary: 35B05: Oscillation, zeros of solutions, mean value theorems, etc.

Citation

Wong, Pui Kei. Integral inequalities of Wirtinger-type and fourth-order elliptic differential inequalities. Pacific J. Math. 40 (1972), no. 3, 739--751. https://projecteuclid.org/euclid.pjm/1102968573


Export citation

References

  • [1] W. Allegretto, Oscillation criteria for fourth order elliptic operators, Boll. Un.Mat. Ital., 3 (1970), 357-361.
  • [2] W. Allegretto and C. A. Swanson, Oscillation criteria for elliptic systems, Proc. Amer. Math. Soc, 27 (1971), 325-330.
  • [3] P. R. Beesack, Integralinequalitiesof the Wirtingertype, Duke Math. J., 25 (1958), 477-498.
  • [4] D. C. Benson, Inequalitiesinvolving integralsof functionsand theirderivatives, J. Math. Anal. Appl. 17 (1967), 292-308.
  • [5] J. Calvert, An integral inequality with applications to the Dirichlet problem, Pacific J. Math., 22 (1967), 19-29. Correction, Ibid., 23 (1967), 631.
  • [6] J. Calvert,Integral inequalities involving second order derivatives, Pacific J. Math., 27 (1968), 39-47.
  • [7] W. J. Coles, Wirtinger-type integral inequalities, Pacific J. Math., 11 (1961),871- 877.
  • [8] J. B. Diaz and D. R. Dunninger, Sturm separation and comparison theorems for a class of fourth order ordinary and partial differentialequations, to appear.
  • [9] D. R. Dunninger, A Picone identity for fourth order elliptic differentialequations with applications, to appear.
  • [10] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1952.
  • [11] K. Kreith, Oscillation theorems for elliptic equations, Proc. Amer. Math. Soc, 15 (1964), 341-344.
  • [12] K. Kreith, A Picone identity for first order differentialsystems, J. Math. Anal. Appl., 31, (1970), 297-308.
  • [13] M. H. Protter and H. F. Weinberger, Maximum Principlesin DifferentialEqua- tions, Prentice-Hall, Englewood Cliffs, N. J., 1967.
  • [14] C. A. Swanson, A comparison theorem for elliptic differentialequations, Proc. Amer. Math. Soc, 17 (1966), 611-616.
  • [15] C. A. Swanson, A generalization of Sturm's comparison theorem, J. Math. Anal. Appl., 15 (1966), 512-517.
  • [16] C. A. Swanson, Comparison theorems for quasilinear elliptic differential inequalities, J. Differential Equations, 7 (1970), 243-250.
  • [17] Pui-Kei Wong, Wirtinger type inequalities and elliptic differentialinequalities, Thoku Math. J., 23 (1971), 117-128.
  • [18] Pui-Kei Wong, A Sturmian theorem for first order partial differential equations, Trans. Amer. Math. Soc, to appear.