Pacific Journal of Mathematics

Finitely-valued $f$-modules.

Stuart A. Steinberg

Article information

Source
Pacific J. Math., Volume 40, Number 3 (1972), 723-737.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102968572

Mathematical Reviews number (MathSciNet)
MR0306078

Zentralblatt MATH identifier
0231.16009

Subjects
Primary: 06A70

Citation

Steinberg, Stuart A. Finitely-valued $f$-modules. Pacific J. Math. 40 (1972), no. 3, 723--737. https://projecteuclid.org/euclid.pjm/1102968572


Export citation

References

  • [1] F. W. Anderson, On f-ringswith the ascending chain condition, Proc. Amer. Math. Soc, 13(1962), 715-721.
  • [2] A. Bigard, Contribution a la theorie des groupes reticules. Ph. D. Thesis, University of Paris, 1969.
  • [3] G. Birkhoff, Lattice Theory, New ed., Colloquim Publications No. 25, Amer. Math. Soc, Providence, 1967.
  • [4] G. Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Cr., 28 (1956), 41-69.
  • [5] P. Conrad, Some structure theorems for lattice-ordered groups, Trans. Amer. Math. Soc, 99 (1961), 212-240. 6.1The lattice of all convex ^-groups of a lattice-ordered group, Czechoslovak Math. J., 15 (1965), 101-123.
  • [7] P. Conrad,Lex-subgroups of lattice-ordered groups, Czechoslovak Math. J., 18(1968), 86-103.
  • [8] P. Conrad and J. E. Diem, The ring of polar preserving endomorphisms of an abelian lattice-ordered group, Illinois J. Math., 15 (1971) 222-240.
  • [9] N. Divinsky, Rings and Radicals, University of Toronto Press, Toronto, 1965.
  • [10] L. Fuchs, Teilweise geordnete algebraische Strukturen,Vandenhoeck and Rupreeht in Gottingen, 1966.
  • [11] M. Henriksen and J. Isbell, Lattice-ordered rings and function rings, Pacific, J. Math., 12 (1962), 533-565.
  • [12] P. Jaffard, Les Systemes dr Ideaux, Dunod, Paris, 1960.
  • [13] D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta. Math., 1O4 (1960), 163-215.
  • [14] D. G. Johnson and J. Kist, Prime ideals in vector lattices, Canad, J. Math., 14 (1962) 517-528.
  • [15] L. S. Levy, Unique subdirect sums of prime rings, Trans. Amer. Math. Soc, 106 (1963), 64-76.
  • [16] P. Ribenboim, On ordered modules, J. fur die reine und angew. Math., 225(1967), 120-146.
  • [17] T. M. Viswansthan, Ph.D. Thesis, Queens University, Kingston, Canada, 1967.
  • [18] E. C. Weinberg, Lectures on Ordered Groups and Rings,Lecture notes, Univer- sity of Illinois, Urbana, 1968.
  • [19] E. C. Weinberg, Relative injectives and universals for categories of ordered struc- tures, to appear in Trans. Amer. Math. Soc.