Pacific Journal of Mathematics

Maximinimax, minimax, and antiminimax theorems and a result of R. C. James.

S. Simons

Article information

Source
Pacific J. Math., Volume 40, Number 3 (1972), 709-718.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102968570

Mathematical Reviews number (MathSciNet)
MR0312194

Zentralblatt MATH identifier
0237.46013

Subjects
Primary: 46A05

Citation

Simons, S. Maximinimax, minimax, and antiminimax theorems and a result of R. C. James. Pacific J. Math. 40 (1972), no. 3, 709--718. https://projecteuclid.org/euclid.pjm/1102968570


Export citation

References

  • [1] K. Fan, Minimax theorems, Proc. Nat. Acad. Sci.,39 (1953), 42-47.
  • [2] K. Fan, Applications of a theorem concerning sets with convex sections, Math. Annalen, 163 (1966), 189-203.
  • [3] R. C. James, Weakly compact sets. Trans. Amer. Math. Soc, 13 (1964), 129-140.
  • [4] H. Konig, Uber das von NeumannscheMinimax-Theorem,Arch. Math., 19 (1968), 482-487.
  • [5] H. Konig, On certain applications of the Hahn-Banach and Minimaxtheorems, Arch. Math., 21 (1970), 583-591.
  • [6] J. D. Pryce, Weak compactness in locally convex spaces, Proc. Amer. Math. Soc, 17 (1966). 148-155.
  • [7] D. Sibony, Le Theoreme de James, Sem. Brelot, Choquet et Deny (Theorie du Potential), 12 (1967/68), n4, 5p (1969).
  • [8] S. Simons, Minimal sublinear functional,Studia Math., 37 (1970), 37-56.
  • [9] S. Simons, A convergence theorem with boundary, To precede this paper.