Pacific Journal of Mathematics

Operators satisfying condition $(G_{1})$ locally.

Glenn R. Luecke

Article information

Source
Pacific J. Math., Volume 40, Number 3 (1972), 629-637.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102968562

Mathematical Reviews number (MathSciNet)
MR0312292

Zentralblatt MATH identifier
0236.47008

Subjects
Primary: 47A10: Spectrum, resolvent

Citation

Luecke, Glenn R. Operators satisfying condition $(G_{1})$ locally. Pacific J. Math. 40 (1972), no. 3, 629--637. https://projecteuclid.org/euclid.pjm/1102968562


Export citation

References

  • [1] S. K. Berberian, Some conditions on an operator implying normality, Math. Ann., 184 (1970). 188-192.
  • [2] S. K. Berberian, Some conditions on an operator implyingnormalityII, Proc. Amer. Math. Soc, (to appear).
  • [3] W. F. Donoghue, On the numerical range of a bounded operator, Michigan Math. J., 4 (1957), 261-263.
  • [4] N. Dunford and J. T. Schwartz, LinearOperators Part I and II, Interscience Publishers, New York, 1957.
  • [5] N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc, 64 (1958), 217-274.
  • [6] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand Company, Princeton, New Jersey, 1967.
  • [7] S. Hildebrandt, Uber den Numerischen Wertebereich eines Operators, Math. Annalen, 163 (1966), 230-247.
  • [8] G. R. Luecke, Topological properties of paranormal operators, Trans. Amer. Math. Soc, (to appear).
  • [9] G. Orland, On a class of operators, Proc. Amer. Math. Soc, 15 (1964), 75-79.
  • [10] C. R. Putnam, Eigenvaluesand boundary spectra, Illinois J. Math., 12 (1968), 278-282.
  • [11] C. R. Putnam, The spectra of operators having resolvents of first-order growth, Trans.
  • [12] F. Riesz and B. Sz-Nagy, FunctionalAnalysis,F. Ungar Publishing Company, New York, 1965.
  • [13] J. G. Stampfli, Hyponormal operators, Pacific J. Math., 12 (1962), 1453-1458.
  • [14] J. F. Stampfli, Hyponormal operators and spectral density,Trans. Amer. Math. Soc, 117 (1966), 469-476.
  • [15] J. G. Stampfli,Analyticextensions and spectral localization,J. Math. Mech., 19 (1966), 287-296.
  • [16] J. G. Stampfli, Minimalrange theorems for operators with thin spectra, Pacific J. Math., 23 (1967), 601-612.
  • [17] J. G. Stampfli, A local spectral theorey for operators, J. Functional Anal., 4 (1969), 1-10. 18.1A local spectral theory for operators II, Bull. Amer. Math. Soc, 75 (1969), 803-806.