Pacific Journal of Mathematics

Strong concentration of the spectra of self-adjoint operators.

Chris Rorres

Article information

Source
Pacific J. Math., Volume 41, Number 1 (1972), 237-246.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102968431

Mathematical Reviews number (MathSciNet)
MR0320786

Zentralblatt MATH identifier
0294.47024

Subjects
Primary: 47A55: Perturbation theory [See also 47H14, 58J37, 70H09, 81Q15]

Citation

Rorres, Chris. Strong concentration of the spectra of self-adjoint operators. Pacific J. Math. 41 (1972), no. 1, 237--246. https://projecteuclid.org/euclid.pjm/1102968431


Export citation

References

  • [1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hubert Space, Vol. I, (English translation). Ungar, New York, 1961.
  • [2] C. C. Conley and P. A. Rejto, On spectral concentration,New York University, Courant Inst. Math. Sci., Res. Rep. No. IMM-NYU--293, 1962. 3.1Spectral concentration II--GeneralTheory, Perturbation Theory and its Applications in Quantum Mechanics, ed. C. H. Wilcox, Wiley, New York, 1966.
  • [4] N. Dunford and J. T. Schwartz, Linear Operators, Part II.SpectralTheory of Self adjoint Operators in Hilbert Space, Interscience, New York, 1963.
  • [5] K. 0. Friedrichs and P. A. Rejto, On a perturbationthrough which the discrete spectrum becomes continuous, Comm. Pure Appl. Math., 15 (1962), 219-235.
  • [6] T. Kato, On the convergence of the perturbation method, J. Fac. Sci. Univ. Tokyo, 6 (1951), 145-226.
  • [7] T. Kato, PerturbationTheory for Linear Operators, Springer, New York, 1966.
  • [8] J. B. McLeod, "Spectral concentration I--the one-dimensional Schroedinger operator", Perturbation Theory and its Applications in Quantum Mechanics, ed. C. H. Wilcox, Wiley, New York, 1966.
  • [9] F. Rellich, Storungstheorieder Spektralzerlegung.II, Math. Ann., 113 (1936), 677-685.
  • [10] H. L. Royden, Real Analysis, Macmillan, New York, 1963.
  • [11] E. C. Titchmarsh, Some theorems on perturbations,V, J. Analyse Math., 4 (1954/55), 187-208.
  • [12] E. C. Titchmarsh, EigenfunctionExpansionsAssociated with Second OrderDifferential Equations, Part II, Clarendon Press, Oxford, 1958.