Pacific Journal of Mathematics

Inverse semigroups of partial transformations and $\theta $-classes.

N. R. Reilly

Article information

Source
Pacific J. Math., Volume 41, Number 1 (1972), 215-235.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102968430

Mathematical Reviews number (MathSciNet)
MR0311824

Zentralblatt MATH identifier
0233.20027

Subjects
Primary: 20M20: Semigroups of transformations, etc. [See also 47D03, 47H20, 54H15]

Citation

Reilly, N. R. Inverse semigroups of partial transformations and $\theta $-classes. Pacific J. Math. 41 (1972), no. 1, 215--235. https://projecteuclid.org/euclid.pjm/1102968430


Export citation

References

  • [1] G. Birkhoff, Lattice Theory, Amer, Math. Soc. Colloquium Pub. Vol. XXV Rev. Ed. (1948).
  • [2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, 1, 2, Math. Surveys of Amer. Math. Soc, No. 7.
  • [3] C. Eberhart and J. Selden, One-parameter inverse semigroups, to appear.
  • [4] J. M. Howie, The maximum idempotent separating congruence on an inverse semi- group, Proc. Edinburgh Math. Soc, (2) 14 (1964), 71-79.
  • [5] W. D. Munn, A class of irreduciblematrixrepresentationsforanarbitrary inverse semigroup, Proc Glasgow Math. Assoc, 5 (1), (1961), 41-48.
  • [6] W. D. Munn, Fundamentalinverse semigroups, Quart, J. Math. Oxford (2), 21 (1970), 157-170.
  • [7] W. D. Munn, Uniform semilattices and bisimple inverse semigroups, Quart. J. Math., Oxford, 17, No. 66, (1966), 151-9.
  • [8] N. R. Reilly, Congruences on a bisimple inverse semigroup in terms of RP-systems, Proc. London Math. Soc, (3) 23 (1971), 99-127.
  • [9] N. R. Reilly and H. E. Scheiblich, Congruences on regular semigroups, Pacific J. Math., 23 (2), (1967), 849-360.