Pacific Journal of Mathematics

Complete non-selfadjointness of almost selfadjoint operators.

Thomas L. Kriete

Article information

Source
Pacific J. Math., Volume 42, Number 2 (1972), 413-437.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102967869

Mathematical Reviews number (MathSciNet)
MR0326439

Zentralblatt MATH identifier
0245.47012

Subjects
Primary: 47A45: Canonical models for contractions and nonselfadjoint operators

Citation

Kriete, Thomas L. Complete non-selfadjointness of almost selfadjoint operators. Pacific J. Math. 42 (1972), no. 2, 413--437. https://projecteuclid.org/euclid.pjm/1102967869


Export citation

References

  • [1] P. R. Ahern and D. N. Clark, On functions orthogonal to invariantsubspaces, Acta Math., 124 (1970), 191-204.
  • [2] L. de Branges and J. Rovnyak, Appendix on Square Summable Power Series, Cano- nical Models in Quantum ScatteringTheory, Perturbation theory and its application in quantum mechanics, Wiley, New York, 1966, pp. 295-391.
  • [3] M. S. Brodskii and M. S. Livsic, Spectral analysis of nonselfad joint operators and intermediate systems, Amer. Math. Soc. Translations, Series 2, Vol. 13, Amer. Math. Soc. Providence, R. I., (1960), 265-346.
  • [4] D. N. Clark, One dimensionalperturbations of restricted shifts, J. Analyse Math., 25 (1972), 169-191.
  • [5] R. G. Douglas, Structuretheory for operators I, J. Reine Angew. Math., 232 (1968), 180-193.
  • [6] P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, Princeton, N. J., 1967.
  • [7] P. R. Halmos, Measure Theory, D. Van Nostrand, Princeton, N. J., 1950.
  • [8] H. Helson, Lectures on InvariantSubspaces, Academic Press, Princeton, N. J., 1964.
  • [9] K. Hoffman, Banach Spaces of AnalyticFuntions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
  • [10] T. L. Kriete, On when an almost selfadjointoperator has no selfadjointpart, Abstract 663-518, Notices Amer. Math. Soc, Vol. 16, No. 1, Jan. (1969), 237.
  • [11] T. L. Kriete, A generalized Paley-Wienertheorem, J. Math. Anal, and Appl., 36 (1971), 529-555.
  • [12] D. Sarason, A remark on the Volterra operator, J. Math. Anal, and Appl., 12 (1965), 244-246.
  • [13] M. Schechter, Invarianceof the essential spectrum,Bull. Amer. Math. Soc, 71 (1965), 365-367.
  • [14] R. T. Seeley, The index of elliptic systems of singular integral operators, J. Math. Anal, and Appl., 7 (1963), 289-309.
  • [15] B. Sz.-Nagy and C. Foias, Analyse harmonique des operateurs de espace de Hilbert, Akademiai Kiado, Budapest, 1967.