Pacific Journal of Mathematics

Linearly stratifiable spaces.

J. E. Vaughan

Article information

Source
Pacific J. Math., Volume 43, Number 1 (1972), 253-266.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102959659

Mathematical Reviews number (MathSciNet)
MR0321021

Zentralblatt MATH identifier
0244.54015

Subjects
Primary: 54E20: Stratifiable spaces, cosmic spaces, etc.

Citation

Vaughan, J. E. Linearly stratifiable spaces. Pacific J. Math. 43 (1972), no. 1, 253--266. https://projecteuclid.org/euclid.pjm/1102959659


Export citation

References

  • [1] A. V. Arhangeski, Mappingsand spaces, Russian Math. Surveys, 21, No. 4, (1966), 115-162.
  • [2] C. E. Aull, A certain class of topological spaces, Prace Mat., 11 (1967), 50-53.
  • [3] C. J. R. Borges, On stratifiable spaces, Pacific J. Math., 17 (1966), 1-16. 4> fStratifiable spaces and continuous extensions, Topology Conference, Arizona State Univ. 1967, Tempe, p. 37-54.
  • [5] C. J. R. Borges, A survey of Mi-spaces:Open questions and partial results, Gen. Top. and Applications, 1 (1970), 79-84.
  • [6] J. G. Ceder, Some generalizationsof metric spaces, Pacific J. Math., 11 (1961), 105-125.
  • [7] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math., 1 (1951), 353-367.
  • [8] R. W. Heath, On open mappings and certain spaces satisfying the first countability axiom, Fund. Math., 57 (1965), 91-96.
  • [9] R. W. Heath, Stratifiablespaces are -spaces, Notices Amer. Math. Soc, 16 (1969), 761.
  • [10] R. W. Heath, An easier proof that a certain countable space is not stratifiable, Proc. Wash. State Univ. Conference on Gen. Top. (1970) 56-59.
  • [11] J. L. Kelley, General Topology, D. Van Nostrand Company, Princeton, 1955.
  • [12] C. J. Knight, Box topologies, Quart. J. Math., (Oxford) ser. 2, 15 (1964), 41-54.
  • [13] E. Michael, Paracompactness and the Lindelbfproperty in finite and countable cartesian products, Compositio Math., 23 (1971), 199-214.
  • [14] H. Tamano, Linearly cushioned refinements,Notices Amer. Math. Soc, 15 (1968), 229.
  • [15] H. Tamano, Paracompactness of strong products, Notices Amer. Math. Soc, 15 (1968), 345.
  • [16] H. Tamano and J. E. Vaughan, Paracompactness and elastic spaces, Proc Amer. Math. Soc, 28 (1971), 299-303.
  • [17] J. E. Vaughan Linearlyordered collections and paracompactness, Proc. Amer. Math. Soc, 24 (1970), 186-192.
  • [18] J. E. Vaughan Linearlyordered collections and paracompactness, Linearly stratifiable spaces, Notices Amer. Math. Soc, 18 (1971), 210.
  • [19] J. E. Vaughan Linearlyordered collections and paracompactness, Linearly stratifiable spaces and a definition given by H. Tamano, Notices Amer. Math. Soc, 18 (1971), 786-787.
  • [20] J. E. Vaughan Linearlyordered collections and paracompactness, An extension of the concept of a Nagata space, Notices Amer. Math. Soc, 19 (1972).
  • [21] Phillip L. Zenor, Monotonically normal spaces, Notices Amer. Math. Soc, 17(1970), 1034.
  • [22] Phillip L. Zenor, Monotonically normal spaces, preprint.
  • [23] M. E. Rudin, The box product of countably many compact metric spaces, preprint.