Pacific Journal of Mathematics

Unicoherent compactifications.

M. H. Clapp and R. F. Dickman, Jr.

Article information

Source
Pacific J. Math., Volume 43, Number 1 (1972), 55-62.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102959642

Mathematical Reviews number (MathSciNet)
MR0377820

Zentralblatt MATH identifier
0244.54011

Subjects
Primary: 54D35: Extensions of spaces (compactifications, supercompactifications, completions, etc.)
Secondary: 54F55: Unicoherence, multicoherence

Citation

Clapp, M. H.; Dickman, R. F. Unicoherent compactifications. Pacific J. Math. 43 (1972), no. 1, 55--62. https://projecteuclid.org/euclid.pjm/1102959642


Export citation

References

  • [1] J. DeGroot and R. H. McDowell, Locally connected spaces and theircompactfications, Illinois J. Math., 11 (1967), 353-364.
  • [2] R. F. Dickman, Jr., Unicoherence and related properties, Duke Math. J., 34 (1967), 343-352.
  • [3] R. F. Dickman, Some characterizationsof the Freudenthalcompactification of a semicom- pact space, Proc. Amer. Math. Soc, 19 (1968), 631-633.
  • [4] H. Freudenthal, Neuaufbauder Endentheorie, Ann. of Math., (2), 43 (1942), 261-279.
  • [5] K. D. Magill, Jr., A note on compactifications,Math Zeitschr., 94 (1966), 322-325.
  • [6] K. Morita, On images of an open interval under closed continuous mappings, Proc. Japan Acad., 32 (1959), 15-19.
  • [7] K. Morita, On bicompactificationsof semibicompact spaces, Sci. Rep. Tokyo Bunrika Daigaku Sect. A, 4 (1952), 222-229.
  • [8] G. T. Whyburn, Open mapingson 2-dimensionalmanifolds,J. Math. Mech., 10 (1961), 181-198.
  • [9] G. T. Whyburn, AnalyticTopology, Amer. Math. Soc. Colloq. Pub., Vol. 28 (1942).