Pacific Journal of Mathematics

The equation $y^{\prime} (t)=F(t,\,y(g(t)))$.

Muril L. Robertson

Article information

Source
Pacific J. Math., Volume 43, Number 2 (1972), 483-491.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102959518

Mathematical Reviews number (MathSciNet)
MR0318623

Zentralblatt MATH identifier
0246.34064

Subjects
Primary: 34G05
Secondary: 34A10

Citation

Robertson, Muril L. The equation $y^{\prime} (t)=F(t,\,y(g(t)))$. Pacific J. Math. 43 (1972), no. 2, 483--491. https://projecteuclid.org/euclid.pjm/1102959518


Export citation

References

  • [1] David R. Anderson, An existence theorem for a solution of f{x) = F(x,f(g(x))), SIAM Review, 8 (1966), 359-362.
  • [2] W. B. Fite, Properties of the solutions of certain functionaldifferential equations^ Trans. Amer. Math. Soc,22 (1921), 311-319.
  • [3] R. G. Kuller, On the differential equation f = fog where gog - J, Math. Mag., 42 (1969), 195-200.
  • [4] Muril L. Robertson, FunctionalDifferentialEquations,Ph. D. Thesis, Emory University., Ga., 1971.
  • [5] W. R. Utz.The equation f(x) = af(g(x)), Bull. Amer. Math. Soc, 71 (1965), 138.