Pacific Journal of Mathematics

Sesquilinear forms in infinite dimensions.

Robert Piziak

Article information

Source
Pacific J. Math., Volume 43, Number 2 (1972), 475-481.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102959517

Mathematical Reviews number (MathSciNet)
MR0318850

Zentralblatt MATH identifier
0245.46006

Subjects
Primary: 46C10
Secondary: 15A63: Quadratic and bilinear forms, inner products [See mainly 11Exx]

Citation

Piziak, Robert. Sesquilinear forms in infinite dimensions. Pacific J. Math. 43 (1972), no. 2, 475--481. https://projecteuclid.org/euclid.pjm/1102959517


Export citation

References

  • [1] R. Arens, Operationals calculus of linear relations, Pacific J. Math., 11 (1961), 9-
  • [2] N. Bourbaki, XXIV Elements De Mathematique I, Les Structure Fundamentales De L'Analyse, Livre II, Algebre, Chapitre IX Forme Sesquilineaire et Formes Quad- ratique, Hermann Paris, (1959).
  • [3] G. V. Dropkin, Dot Modules,Honors Thesis, Amherst College, May 1967, (un- published)
  • [4] H. R. Fisscher and H. Gross, Quadratic formsand lineartopologies, I, Math. Annalen, 157, (1964), 296-325.
  • [5] S. S. Holland, Jr., Lecture notes on Hilbert space, Univ. of Mass., 1968-69.
  • [6] I. Kaplansky, Forms in infinitedimensionalspaces, Anais da Academia Brasieiia De Ciencias, 22 (1950), 1-17.
  • [7] I. Kaplansky, Orthogonal similarityin infinite-dimensionalspaces, Proc. Amer. Math. Soc, 3 (1952), 16-25.
  • [8] I. Kaplansky, Quadratic forms, J. Math. Soc. Japan 6 (1953), 200-207.
  • [9] R. Piziak, Mackey closure operators, J. London Math. Soc, (2) 4 (1971), 33-38.
  • [10] R. Piziak, Orthomodular Posets from SesquilinearForms, (to appear in J. Australian Math. Soc).
  • [11] R. Piziak, An Algebraic Generalization of Hilbert Space Geometry, Ph. D. Thesis, Univ. of Mass. (1969).
  • [12] Von Nemann, J., Tiber adjungierteFunktional-operatoren,Ann. Math., 33(1932), 294-310.