Pacific Journal of Mathematics

Algebras of normal matrices.

George Maxwell

Article information

Source
Pacific J. Math., Volume 43, Number 2 (1972), 421-428.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102959511

Mathematical Reviews number (MathSciNet)
MR0318189

Zentralblatt MATH identifier
0246.15026

Subjects
Primary: 15A30: Algebraic systems of matrices [See also 16S50, 20Gxx, 20Hxx]
Secondary: 16A40

Citation

Maxwell, George. Algebras of normal matrices. Pacific J. Math. 43 (1972), no. 2, 421--428. https://projecteuclid.org/euclid.pjm/1102959511


Export citation

References

  • [1] A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. PubL, no. 24, 1961.
  • [2] W. Ambrose, Structure theorems for a special class of Banach algebras, Trans, Amer. Math. Soc, 57 (1945), 364-386.
  • [3] S. A. Amitsur, Identities in rings with involution, Israel J. Math., 7 (1969), 63-68.
  • [4] E. A. Bender, Characteristicpolynomials of symmetric matrices, Pacific J. Math., 25 (1968),433-441.
  • [5] B. Fuglede, A commutativitytheorem for normal operators, Proc. Nat. Acad. Sci., U.S.A. 36 (1950), 125-134.
  • [6] I. Kaplansky, Rings of operators, Benjamin, New York, 1968.
  • [7] I. Kaplansky,Rings with a polynomial identity, Bull. Amer. Math. Soc, 54 (1948),575- 580.
  • [8] I. Kaplansky, Products of normal operators, Duke Math. J., 20 (1953), 257-260.
  • [9] M. Marcus and H. Mine, A survey of matrix algebra and matrix inequalities, Allyn & Bacon, Boston, 1964.
  • [10] C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math., 73 (1951), 357-362.
  • [11] J. Von Neumann, Approximativeproperties of matrices of high finite order, Portug. Math., 3 (1942) 1-62.