Pacific Journal of Mathematics

Derivation in infinite planes.

N. L. Johnson

Article information

Source
Pacific J. Math., Volume 43, Number 2 (1972), 387-402.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102959508

Mathematical Reviews number (MathSciNet)
MR0328765

Zentralblatt MATH identifier
0251.50011

Subjects
Primary: 50D35

Citation

Johnson, N. L. Derivation in infinite planes. Pacific J. Math. 43 (1972), no. 2, 387--402. https://projecteuclid.org/euclid.pjm/1102959508


Export citation

References

  • [1] A. A. Albert, The finite planes of Ostrom, Bol. Soc. Mat. Mexicana, (1967), 1-13.
  • [2] J. Andre, Uber ncht-Desarguessche Ebenen mit transitiverTranslationsgruppe, Math. Z., 60 (1954), 156-186.
  • [3] A. Barlotti and R. C. Bose, Linear Representation of a Class of ProtectivePlanes in Four Dimensional Protective Space, Inst. Statistics Mimeo Ser. No. 600.20, Dept. Stat., Univ. North Carolina at Chapel Hill (1970).
  • [4] R. C. Bose and R. H. Bruck, The construction of translation planes from projective spaces, J. Algebra, 1 (1964), 85-102.
  • [5] R. C. Bose and R. H. Bruck, Linear representations of projective planes in projective spaces, J. Algebra, 4 (1966), 117-172.
  • [6] A. Bruen, Spreads and a conjecture of Bruck and Bose, To appear in J. Algebra.
  • [7] A. Bruen and J. C. Fisher, Spreads which are not dual spreads, Canad. Math. Bull, 12 (1969), No. 6, 801-803.
  • [8] R. P. Burn, Bol quasi-field and Pappus' theorem, Math. Z., 105 (1968), 351-364.
  • [9] R. Fryxell, Sequences of planes constructed from near field planes of square order, Ph. D. dissertation, Washington State Univ., 1964.
  • [10] D. E. Knuth, Finite semi fields and projective planes, J. Algebra, 2 (1965), 182-217.
  • [11] H. Lneburg, Charakterisierungender endlichen desarguesschen projektiven Ebenen, Math. S., 85 (1964), 419-450.
  • [12] T. G. Ostrom, Finite Tpanslation Planes, Springer-Verlag Notes #158 (1970).
  • [13] T. G. Ostrom, Semi-translation planes, Trans. Amer. Math. Soc, 111 (1964), 1-18.
  • [14] T. G. Ostrom,Vector spaces and construction of finite projective planes, Arch. Math., 19 (1968), 1-25.
  • [15] G. Panella, Una classe di sistemi cartesiani, Atti. Accad. Naz.Lincei Rend. Cl. Fis. Mat. Natur., 8 (1965), 480-485.
  • [16] G. Pickert, Projektive Ebenen, Springer-Verlag, Berlin (1955).
  • [17] G. Pickert, Die cartesischen Gruppen der Ostrom-Rosati-Ebenen, Abh. Hamburg, 30 (1967), 106-117.
  • [18] L. A. Rosati, Su una generalizzuzione dei piani di Hughes., Atti Accad. Naz. Lincei Rend. CL Fis. Mat. Natur., 29 (1960), 330-308.
  • [19] L. A. Rosati, Su una nuova classe di piani grafici, Ricerche Mat., 13 (1964), 39-55.
  • [20] R. Sabharwal, Planes associated with infinitenearfields, Ph. D. Dissertation, Washington State Univ., 1966.
  • [21] J. D. Swift, Chains and graphs of Ostrom planes, Pacific J. Math., 14 (1964),353- 362.