Pacific Journal of Mathematics

Superadditivity intervals and Boas' test.

G. D. Johnson

Article information

Source
Pacific J. Math., Volume 43, Number 2 (1972), 381-385.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102959507

Mathematical Reviews number (MathSciNet)
MR0340507

Zentralblatt MATH identifier
0245.26006

Subjects
Primary: 26A51: Convexity, generalizations

Citation

Johnson, G. D. Superadditivity intervals and Boas' test. Pacific J. Math. 43 (1972), no. 2, 381--385. https://projecteuclid.org/euclid.pjm/1102959507


Export citation

References

  • [1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc, 54 (1948), 439-460.
  • [2] E. F. Beckenbach, Superadditivityinequalities, Pacific J. Math., 14, (1964), 421-438.
  • [3] A. M. Bruckner, Tests for the superadditivity of functions, Proc. Amer. Math. Soc,
  • [4] A. M. Bruckner and E. Ostrow, Some function classes related to the class of convex functions, Pacific J. Math., 12 (1962), 1203-1215.
  • [5] N. G. Chebotarev, On the methods of Sturm and Fourier for transcendent functions, Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS, 34 (1942), 2-4.
  • [6] J. D. Esary, A. W. Marshall and F. Proschan, Some reliability applications of the hazard transform, SIAM J. Applied Math., 18 (1970), 849-860.
  • [7] F. R. Gantmacher, Theory of Matrices, vol. II, Chelsea Pub. Co., New York, N. Y., (1959).
  • [8] E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloquium Publications, vol. XXXI, rev. ed., Amer. Math. Soc, Providence, R. I. (1957).
  • [9] J. Kiefer, Sequential minimax search for a maximum, Proc. Amer. Math. Soc, 4 (1953), 502-506.
  • [10] A. Ralston, A First Course in Numerical Analysis, McGraw-Hill Book Co., New York, N. Y., (1965).
  • [11] R. A. Rosenbaum, Subadditive Functions, Duke Math. J., 17 (1960), 227-247.
  • [12] J. V. Whittaker, Problem 4712, Amer. Math. Monthly, 63 (1956), 669.