Pacific Journal of Mathematics

Essential central spectrum and range for elements of a von Neumann algebra.

Herbert Halpern

Article information

Source
Pacific J. Math., Volume 43, Number 2 (1972), 349-380.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102959506

Mathematical Reviews number (MathSciNet)
MR0324435

Zentralblatt MATH identifier
0252.46076

Subjects
Primary: 46L10: General theory of von Neumann algebras

Citation

Halpern, Herbert. Essential central spectrum and range for elements of a von Neumann algebra. Pacific J. Math. 43 (1972), no. 2, 349--380. https://projecteuclid.org/euclid.pjm/1102959506


Export citation

References

  • [1] J. Anderson, Commutators and the essential numerical range, Notices Amer. Math. Soc., 18 (1971), no.6 82-47-14.
  • [2] S. Berberian and G. H. Orland, On the closure of the numericalrange of an opera- tor, Proc. Amer. Math. Soc,18 (1967), 499-503.
  • [3] A. Brown, C. Pearcy and D. Topping, Commutators and the strong radical, Duke Math. J., 53 (1968), 853-859.
  • [4] J. Conway, The numericalrange and a certain convex set in an infinite factor, J. Functional Analysis, 5 (1970), 428-435.
  • [5] M. David, On a certain type of commutator, J. Math. Mech., 19 (1969/70), 665-680.
  • [6] D. Deckard andC. Pearcy, Continuous matrix-valued functions on a Stonian space, Pacific J. Math., 14 (1964), 857-869.
  • [7] J. Dixmier, Sur certains espaces consideres par M.H. Stone Summa Brasil. Math. 2 fasc, 11 (1951), 151-182.
  • [8] J. Dixmier,Applications tq dans les anneaux d'operateurs, Compos. Math., 10 (1952), 1-55.
  • [9] J. Dixmier, Les algebres d'operateurs dans espace hilbertien, Cahiers Scientifiques, fasc. 25 Gauthier-Villars, Paris,1969.
  • [10] J. Dixmier, Les C*-algebres et leurs representations , Cahier Scientifiques, fasc. 29, Gauthier-Villars, Paris,1964.
  • [11] P. Fillmore and J. G. Stampfli, J. P. Williams, On the essential numericalrange, the essential spectrum, and a problem of Halmos.
  • [12] J. Glimm, A Stone-Weierstrasstheorem for C*-algebras, Ann. of Math., (2) 72 (1960), Ann. of Math., (2)72 (1960), 216-244.
  • [13] M. Goldman, Structureof AW*-algebras of type I, Duke J. Math., 23 (1956), 23-
  • [14] H. Halpern, A spectral decomposition for self-adjoint elements in the maximum GCR ideal of a von Neumann algebra with applications to non-commutativeintegra- tion theory, Trans. Amer. Math. Soc, 133 (1968), 281-306.
  • [15] H. Halpern, Commutators in a properly infinite vonNeumann algebra, Trans. Amer. Trans. Amer. Math. Soc, 139 (1969), 55-73.
  • [16] H. Halpern, Module homomorphisms of a vonNeumann algebra into its center, Trans. Amer. Math. Soc, 140 (1970), 183-193.
  • [18] H. Halpern, Commutators modulo the center in a properly infinite von Neumann algebra, Trans. Amer. Math. Soc, 150 (1970), 55-68.
  • [19] H. Halpern, A generalized dual for a C*-algebra, Trans. Amer. Math. Soc, 153(1971), 139-156.
  • [20] R. V. Kadison, Derivations of operator algebras, Ann. of Math., 83 (1966), 280-293.
  • [21] I. Kaplansky, Projections in Banach algebras, Ann. of Math., (2) 53 (1951), 235- 249.
  • [22] I. Kaplansky, Algebras of type I, Ann. of Math. (2), 56 (1952), 460-472.
  • [23] I. Kaplansky, Modules over operator algebras, Amer. J. Math., 75 (1953),839-858.
  • [24] Y. Misonou, On a weakly central operator algebra, Tohku Math. J., (2) 4 (1952), 194-202.
  • [25] H. Radjavi, Structure of A*A - AA*, J. Math. Mech., 16 (1966), 19-26.
  • [26] C. Rickart, General theory of Banach algebras, The University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960.
  • [27] S. Sakai, Derivations of W*-algebras, Ann. of Math., 83 (1966), 273-279.
  • [28] I. E. Segal, A non-commutative extension of abstract integration,Ann. of Math., (2) 57 (1953), 401-457.
  • [29] J. G. Stampfii, The range of a derivation (to appear).
  • [30] J. Tomyama, Generalized dimension function forW*-algebras of infinitetype, Tohku Math. J., 10 (1958), 121-129.
  • [31] W. Wils, Two-sided ideals in W*-algebras, J. Reine Agnew. Math., 244 (1971), 55-68.
  • [32] F. B. Wright, A reduction for algebras of finite type, Ann. of Math., 60 (1954), 560-570.