Pacific Journal of Mathematics

A theorem on Noetherian hereditary rings.

Victor P. Camillo and J. Cozzens

Article information

Source
Pacific J. Math., Volume 45, Number 1 (1973), 35-41.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102947705

Mathematical Reviews number (MathSciNet)
MR0318198

Zentralblatt MATH identifier
0253.16001

Subjects
Primary: 16A04

Citation

Camillo, Victor P.; Cozzens, J. A theorem on Noetherian hereditary rings. Pacific J. Math. 45 (1973), no. 1, 35--41. https://projecteuclid.org/euclid.pjm/1102947705


Export citation

References

  • [1] P. M. Cohn, Free rings and their relations. Academic Press, 1971.
  • [2] P. M. Cohn, Noncommutative unique factorizationdomains, Trans. Amer. Math. Soc, 109 (1963), 313-331.
  • [3] P. M. Cohn, Free associative algebras, Bull. London Math. Soc, 1 (1969), 1-39.
  • [4] A. V. Jategaonkar, Left Principal Ideal Rings, Springer Lecture Notes in Mathe- matics 123, Springer-Verlag, Berlin.
  • [5] A. V. Jategaonkar, A counterexample in ring theory and homological algebra, J. Algebra, 12 (1969), 418-440.
  • [6] Irving Kaplansky, Rings and Fields, University of Chicago Press (1969).
  • [7] J. C. Robson, Rings in which finitely generated right ideals are principal,Proc. London Math. Soc., Ser. 3, 17 (1966), 617-628.
  • [8] F. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc, 19 (1968), 225-230.
  • [9] D. G. Webber, Ideals and modules of simple noetherian hereditary rings, J. Algebra, 16 (1970), 239-242.