Pacific Journal of Mathematics

On metrizability of complete Moore spaces.

G. M. Reed

Article information

Source
Pacific J. Math., Volume 50, Number 2 (1974), 595-599.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102913246

Mathematical Reviews number (MathSciNet)
MR0346756

Zentralblatt MATH identifier
0315.54037

Subjects
Primary: 54E30: Moore spaces

Citation

Reed, G. M. On metrizability of complete Moore spaces. Pacific J. Math. 50 (1974), no. 2, 595--599. https://projecteuclid.org/euclid.pjm/1102913246


Export citation

References

  • [1] R. H. Bing, Metrzationof topological spaces, Canad. J. Math., 3 (1951), 175-186.
  • [2] H. Cook, Cartesian products and continuoussemi-metrics, Proc. of the Arizona State Univ. Top. Conf., (1967), 58-62.
  • [3] R. W. Heath, Arcwise connectedness in semi-metric spaces, Pacific J. Math., 12 (1963), 1301-1319.
  • [4] R. W. Heath,A nonpointwise paracompact Moore space with a point countable base, Notices Amer. Math. Soc, 10 (1963), 649-650.
  • [5] R. W. Heath, Screenability, pointwise paracompactness, and metrization of Moorespaces, Canad. J. Math., 16 (1964), 763-770.
  • [6] R. W. Heath, Separability and ^ i-compactness, Coll. Math., 12 (1964), 11-14. 7# 1Metrizability, compactness, and paracompactness in Moore spaces, Notices Amer. Math. Soc, 10 (1963), 105.
  • [8] L. F. McAuley, A relation between perfect separability, completeness, and normality in semi-metric spaces, Pacific J. Math., 6 (1956), 315-326.
  • [9] R. L. Moore, Foundations of Point Set Theory, Amer. Math. Soc. Coll. Publ. 13, Revised Edition, Providence, R.I., 1962.
  • [10] G. M. Reed, On screenability and metrizability of Moore spaces, Canad. J. Math., 23 (1971), 1087-1092.
  • [11] D. R. Traylor, Completeness in developable spaces, preprint.
  • [12] P. Zenor, On spaces with regular G-diagonals, Pacific J. Math., 40 (1972),759-763.