Pacific Journal of Mathematics

The local compactness of $vX$.

Douglas Harris

Article information

Source
Pacific J. Math., Volume 50, Number 2 (1974), 469-476.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102913233

Mathematical Reviews number (MathSciNet)
MR0346751

Zentralblatt MATH identifier
0295.54034

Subjects
Primary: 54D60: Realcompactness and realcompactification

Citation

Harris, Douglas. The local compactness of $vX$. Pacific J. Math. 50 (1974), no. 2, 469--476. https://projecteuclid.org/euclid.pjm/1102913233


Export citation

References

  • [1] W. W. Comfort, Locally compact realcompactifications,General Topology and its Relations to Modern Analysis and Algebra II, Proceedings of the Second Prague To- pological Symposium, (1966), 95-100.
  • [2] W. W. Comfort, On the Hewitt realcompactification of a product space, Trans. Amer. Math. Soc, 131 (1968), 107-118.
  • [3] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
  • [4] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, 1960.
  • [5] D. Harris, Closed images of the Wallman compactification, Proc. Amer. Math. Soc, 42 (1974), 312-319.
  • [6] D. Harris,Semirings and Trcompactifications I, Trans. Amer. Math. Soc, to appear.
  • [7] A. W. Hager, On the tensor product of function rings, Doctoral Dissertation, Pen- nsylvania State University, University Park, Pa., 1965.
  • [8] M. Henriksen and J. Tsbell, Some properties of compactifications, Duke Math. J., 25 (1958), 83-106.
  • [9] D. G. Johnson and M. Mandelker, Functions with pseudocompact support, General Topology and Appl., to appear.
  • [10] M. Mandelker, Round z-filters and round subsets of X, Israel J. Math., 7 (1969), 1-8.
  • [11] M. Mandelker, Supports of continuous functions, Trans. Amer. Math. Soc, 156 (1971), 73-83.