Pacific Journal of Mathematics

Ideals in convolution algebras on Abelian groups.

William E. Dietrich, Jr.

Article information

Source
Pacific J. Math., Volume 51, Number 1 (1974), 75-88.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102912795

Mathematical Reviews number (MathSciNet)
MR0358220

Zentralblatt MATH identifier
0279.43007

Subjects
Primary: 43A10: Measure algebras on groups, semigroups, etc.

Citation

Dietrich, William E. Ideals in convolution algebras on Abelian groups. Pacific J. Math. 51 (1974), no. 1, 75--88. https://projecteuclid.org/euclid.pjm/1102912795


Export citation

References

  • [1] J. Cigler, Normed ideals in L\G), Indag. Math., 31 (1969), 273-232.
  • [2] G. DeMarco, On the countably generated Z-ideals of C(X), Proc. Amer. Math.Soc, 31 (1972), 574-576.
  • [3] W. Dietrich, Jr., A note on the ideal structure of (X), Proc. Amer. Math. Soc,23 (1969), 174-178.
  • [4] W. Dietrich, On the ideal structure of C(X),Trans. Amer. Math. Soc, 152(1970), 61-77.
  • [5] W. Dietrich,On the ideal structure of Banach algebras, Trans. Amer. Math. Soc, 169 (1972), 59-74. . fPrime ideals in uniformalgebras, Proc Amer. Math. Soc,(toappear).
  • [7] J. Dieudonne andL. Schwartz, La dualite dans les espaces (^~) et {^>^r), Ann. Inst. Fourier, Grenoble, (1949), 61-101, (1950).
  • [8] L. Gillman and M. Jerison, Rings of Continuous Functions, University Series inHigher Math., Van Nostrand, Princeton, N. J., 1960.
  • [9] I. Glicksberg, When is *Lclosed*!, Trans. Amer. Math. Soc,160(1971), 419-425.
  • [10] A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Memoirs Amer. Math. Soc, 16 (1955).
  • [11] E. Hewitt andK. Ross, Abstract Harmonic Analysis I, Springer-Verlag, New York, 1963.
  • [12] E. Hewitt andK. Ross, Abstract Harmonic Analysis II, Springer-Verlag, NewYork, 1970.
  • [13] R. Larsen, T. Liu, and J. K. Wang, On functions with Fourier transforms in Lp, Mich. Math. J., 11 (1964), 369-378.
  • [14] A. Mallios, On the spectrumof a topological tensor product of locally convex algebras, Math. Ann., 154 (1964), 171-180.
  • [15] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Clarendon Press, Oxford, 1968.
  • [16] W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.
  • [17] J. L. Taylor, Convolution measure algebras with group maximal ideal spaces, Trans. Amer. Math. Soc, 128 (1967), 257-263.
  • [18] J. L. Taylor, L-subalgebras of M(G), Trans. Amer. Math. Soc, 135 (1969), 105-113.