Pacific Journal of Mathematics

Derivations of $AW^{\ast}$-algebras are inner.

Dorte Olesen

Article information

Source
Pacific J. Math., Volume 53, Number 2 (1974), 555-561.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102911622

Mathematical Reviews number (MathSciNet)
MR0358378

Zentralblatt MATH identifier
0298.46064

Subjects
Primary: 46L10: General theory of von Neumann algebras

Citation

Olesen, Dorte. Derivations of $AW^{\ast}$-algebras are inner. Pacific J. Math. 53 (1974), no. 2, 555--561. https://projecteuclid.org/euclid.pjm/1102911622


Export citation

References

  • [1] W. B. Arveson, On groups of automorphismsof operator algebras, J. Functional Analysis, 15 (1974), 217-243.
  • [2] H. J. Borchers, tber Ableitungen von C*-Algebren, Nachr. d. Gottinger Akad., Nr. 2 (1973).
  • [3] J. C. Deel, Derivations of AW*-algebras, Preprint.
  • [4] G. A. Elliott, On derivations of AWr*-algebras, Preprint.
  • [5] H. Halpern, The norm of an inner derivation of an AW*-algebra, Preprint.
  • [6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, New Jersey, 1962.
  • [7] R. V. Kadison, E. C. Lance, and J. R. Ringrose, Derivations and automorphisms of operator algebras II, J. Functional Analysis, 1 (1967), 204-221.
  • [8] I. Kaplansky, Rings of Operators, Benjamin, New York, 1968.
  • [9] I. Kaplansky,Modules over operator algebras, Amer. J. Math., 75 (1953), 839-858.
  • [10] I. Kaplansky, Projections in Banach algebras, Ann. of Math., 53 (1951), 235-249.
  • [11] L. Loomis, Abstract HarmonicAnalysis, Van Nostrand, New York, 1953.