Pacific Journal of Mathematics

Branched immersions onto compact orientable surfaces.

John D. Elwin and Donald R. Short

Article information

Source
Pacific J. Math., Volume 54, Number 1 (1974), 113-122.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102911445

Mathematical Reviews number (MathSciNet)
MR0362332

Zentralblatt MATH identifier
0292.57009

Subjects
Primary: 57D20
Secondary: 57D40

Citation

Elwin, John D.; Short, Donald R. Branched immersions onto compact orientable surfaces. Pacific J. Math. 54 (1974), no. 1, 113--122. https://projecteuclid.org/euclid.pjm/1102911445


Export citation

References

  • [1] G. E. Bredon, Sheaf Theory, McGraw-Hill, New York, 1967.
  • [2] P. T. Church and J. G. Timourian, Differentiable maps with 0-dimensional critical set, Pacific J. Math., 41 (1972), 615-630.
  • [3] D. B. Gauld, Tubularneighborhoods for submersions of topologicalmanifolds, University of Auckland report No. 11, Auckland, N. Z., 1972.
  • [4] R. Godement, Topologie Algebrique et Theorie des Faisceaux, Hermann, Paris, 1964.
  • [5] R. Gulliver, R. Osserman, and H. Royden, A theory of branched immersionsof surfaces, Amer. J. Math., 95 (1973), 750-812.
  • [6] E. Heinz, Ein RegularitdtssatzfurFldchen beschrdnkter mittererKrummung, Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. 2 (1969), 107-118.
  • [7] J. P. Serre, Homologie singuliere des espaces fibres, Applications, Ann. of Math., 2 (1951), 425-505.
  • [8] D. R. Short and J. W. Smith, A Vietoris-Begle theorem for submersions, Indiana Univ. Math. J., 10 (1970), 327-336.
  • [9] H. Whitney, Functions differentiable on the boundaries of regions, Ann. of Math., 34 (1934), 482-485.
  • [10] G. T. Whyburn, AnalyticTopology, American Mathematical Society Colloquium Publication vol. 28, New York, 1942.