Pacific Journal of Mathematics

Generalized Hall planes of even order.

Alan Rahilly

Article information

Source
Pacific J. Math., Volume 55, Number 2 (1974), 543-551.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102910988

Mathematical Reviews number (MathSciNet)
MR0370351

Zentralblatt MATH identifier
0303.50013

Subjects
Primary: 50D35

Citation

Rahilly, Alan. Generalized Hall planes of even order. Pacific J. Math. 55 (1974), no. 2, 543--551. https://projecteuclid.org/euclid.pjm/1102910988


Export citation

References

  • [1] P. Dembowski, Finite Geometries, (Ergebrisse der Mathematikund ihrer Gren- zgebiete, Band 44, Springer-Verlag, Berlin, Heidelberg, New York, 1968)
  • [2] Marshall Hall, Jr. The Theory of Groups,The Macmillan Company, New York, 1959.
  • [3] D. R. Hughes, Collineation groups of nondesarguesianplanes, I.The Hall Veblen- Wedderburn systems, Amer. J. Math., 81 (1959), 921-938.
  • [4] Norman Lloyd Johnson, A classification of semi-translationplanes, Canad. J. Math., 21 (1969), 1372-1387.
  • [5] Norman Lloyd Johnson, Translationplanes constructed from semifield planes, Pacific J. Math., 36 (1971), 701-711. 6.1A characterizationof generalized Hall planes, Bull. Austral. Math. Soc, 6 (1972), 61-67.
  • [7] P. B. Kirkpatrick, Generalization of Hall planes of odd order, Bull. Austral. Math. Soc, 4 (1971), 205-209.
  • [8] P. B. Kirkpatrick, A characterizationof the Hall planes of odd order, Bull. Austral. Math. Soc, 6 (1972), 407-415.
  • [9] T. G. Ostrom, Semi-translationplanes, Trans. Amer. Math. Soc, 111 (1964), 1-18.
  • [10] A. J. Rahilly, Veblen-Wedderburn systems and translationplanes, M. Sc. Thesis, University of Melbourne, 1970.