Pacific Journal of Mathematics

The back-and-forth isomorphism construction.

Dale Myers

Article information

Source
Pacific J. Math., Volume 55, Number 2 (1974), 521-529.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102910986

Mathematical Reviews number (MathSciNet)
MR0369053

Zentralblatt MATH identifier
0309.02057

Subjects
Primary: 02H05
Secondary: 08A05: Structure theory 18A15: Foundations, relations to logic and deductive systems [See also 03- XX]

Citation

Myers, Dale. The back-and-forth isomorphism construction. Pacific J. Math. 55 (1974), no. 2, 521--529. https://projecteuclid.org/euclid.pjm/1102910986


Export citation

References

  • [1] Jon Barwise, Back and forth through infinitarylogic, Studies in Model Theory (M. D. Morley, Editor), The Mathematical Association of America, 1973.
  • [2] Georg Cantor, Beitrdge zur Begrundung der transfinitenMengenlehre, Math. Ann., 96 (1895), 481-512.
  • [3] William Hanf, PrimitiveBoolean algebras, Proceedings of the Symposium in Honor of Alfred Tarski, (Berkeley, 1971), Amer. Math. Soc, Providence, R. I., 25 (1974), 75-90.
  • [4] Henkin, Monk, and Tarski, Cylindric Algebras, North-Holland Publishing Company, Amsterdam, 1971.
  • [5] Irving Kaplansky, InfiniteAbelian Groups, Michigan Press, Ann Arbor, 1969.
  • [6] Carol Karp, Finite QuantifierEquivalence, The Theory of Models, North-Holland Publishing Company, Amsterdam, 1965.
  • [7] Saunders Mac Lane, Categories for the Working Mathematician,Springer-Verlag, New York, 1971.
  • [8] M. Morley and R. L. Vaught, Homogeneous universalmodels, Math. Scand., 11 (1962), 37-57.
  • [9] Dale Myers, The Boolean algebras of abelian groups and VJell-orders, J. Symbolic Logic, 39 (1974), 452-458.
  • [10] R. S. Pierce, Compact zero-dimensional metric spaces of finite type, Memoirs of the Amer. Math Soc, no. 130 (1972).
  • [11] Ian Richards, On the classification of noncompact surfaces. Trans. Amer. Math. Soc, 106 (1963), 259-269.
  • [12] Roger Simons, The Boolean algebra of sentences of the theory of a function, Ph. D. thesis, Berkeley, 1972.
  • [13] R. L. Vaught, Topics in the theory of arithmeticalclasses and Boolean algebras, Ph. D. thesis, Berkeley, 1954.