Pacific Journal of Mathematics

Stability of measure differential equations.

S. Leela

Article information

Source
Pacific J. Math., Volume 55, Number 2 (1974), 489-498.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102910983

Mathematical Reviews number (MathSciNet)
MR0508632

Zentralblatt MATH identifier
0319.34071

Subjects
Primary: 34D99: None of the above, but in this section

Citation

Leela, S. Stability of measure differential equations. Pacific J. Math. 55 (1974), no. 2, 489--498. https://projecteuclid.org/euclid.pjm/1102910983


Export citation

References

  • [1] E. A. Barbashin, On stability with respect to impulsive perturbations, DifF. Uravn.
  • [2] P. C. Das and R. R. Sharma, On optimalcontrols for measure delaydifferential equations, J. SIAM Control, 9 (1971), 43-61. 3.1Existence and stability of measure differentialequations, Czech. Math. J., 22 (97), (1972), 145-158.
  • [4] V. Lakshmikantham and S. Lecla, Differentialand Integral Inequalities,Vol. 1, Academic Press, N. Y., 1969.
  • [5] S. Leela, Asymptoticallyself invariantsets and perturbed systems, Annali Di Matematica pura ed applicata, No. 4, Vol. XCII (1972), 85-93.
  • [6] W. W. Schmaedeke, Optimal control theory for nonlinear vector differentialequa- tions, containing measures, J. SIAM Control, 3 (1965), 231-280.
  • [7] S. T. Zabalishchin, Stability of generalized processes, Diff. Uravn. 2, No. 7 (1966), 872-881.