Pacific Journal of Mathematics

Metrizability of topological spaces.

R. E. Hodel

Article information

Source
Pacific J. Math., Volume 55, Number 2 (1974), 441-459.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102910979

Mathematical Reviews number (MathSciNet)
MR0370520

Zentralblatt MATH identifier
0299.54022

Subjects
Primary: 54E35: Metric spaces, metrizability

Citation

Hodel, R. E. Metrizability of topological spaces. Pacific J. Math. 55 (1974), no. 2, 441--459. https://projecteuclid.org/euclid.pjm/1102910979


Export citation

References

  • [1] P. S. Alexandroff and P. Urysohn, Une condition nessaire et suffisante pour qu'une class (L)sait une class (D), C. R. Acad. Sci. Paris, 177 (1923), 1274-1277.
  • [2] G. Aquaro, Point-countable open coverings in countably compact spaces, General Topology and Its Relations to Modern Analysis and Algebra II,Academia,Prague (1966), 39-41.
  • [3] A. V. Arhangeski, On hereditary properties, General Topology and Its Applica- tions, 3 (1973), 39-46.
  • [4] A. V. Arhangeski,On a class of spaces containing all metric and all locally bicompact spaces, Amer. Math. Soc. Transl., 2 (1970), 1-39.
  • [5] A. V. Arhangeski,Mappings and spaces, Russian Math. Surveys, 21 (1966), 115-162.
  • [6] A. V. Arhangeski, An addition theorem for the weight of spaces lying in bicompacta, Dokl. Akad. Nauk SSSR, 126 (1959),239-241.
  • [7] A. V. Arhangeski and V. Proizvolov, On the connection between the point-cardi- nality of systems of subsets of a bicompact set and its weight, Vestnik Moskov. Univ. Ser. I Mat. Meh., 21 (1966), 75-77.
  • [8] S. Armentrout, Completing Moore spaces, Proceedings of the Arizona State U. Topology Conference, (1967),22-35.
  • [9] H. R. Bennett, A note on the metrizabilityof M-spaces, Proc. Japan Acad., 45 (1969), 6-9.
  • [10] H. R. Bennett, On quasi-developable spaces, General Topology and Its Applications, 1 (1971), 253-262.
  • [11] H. R. Bennett and E. S. Berney, On certain generalizationsof developable spaces, General Topology and its Applications, 4 (1974), 43-50.
  • [12] R. H. Bing, Metrization of topological spaces, Canad. J. Math., 3 (1951),175-186. C. J. R. Borges, On stratifiable spaces, Pacific J. Math., 17 (1966), 1-16. , On metrizabilityof topological spaces, Canad. J. Math., 20 (1968), 795- Burke, On subparacompactspaces, Proc. Amer. Math. Soc, 23 (1969), On p-spaces and w-spaces, Pacific J. Math., 35 (1970), 285-296. A nondevelopable locally compact Hausdorff space with a G-diagonal, General Topology and Its Applications, 2 (1972),287-291.
  • [18] J. G. Ceder, Some generalizationsof metric spaces, Pacific J. Math., 11 (1961), 105-125.
  • [19] M. M. Coban, Mappings of metric spaces, Soviet Math. Dokl., 10 (1969), 258-260.
  • [20] M. M. Coban, Some metrization theorems for p-spaces, Soviet Math. Dokl., 8 (1967), 561-563.
  • [21] H. H. Corson and E. Michael, Metrizabilityof certain countable unions, Illinois J. Math., 8 (1964), 351-360.
  • [22] G. Creede, Concerning semi-stratifiable spaces, Pacific J. Math., 32 (1970),47-54.
  • [23] R. Engelking, Outline of General Topology, Interscience Publishers,1968.
  • [24] V. V. Filippov, On feathered paracompacta, Soviet Math. Dokl., 9(1968),161-164.
  • [25] R. F. Gittings, Concerning quasi-complete spaces, Notices Amer. Math. Soc, 20 (1973), A-511.
  • [26] E. E. Grace and R. W. Heath, Separabilityand metrizabilityin pointwise para- compact Moore spaces, Duke Math. J., 31 (1964), 603-610.
  • [27] R. W. Heath, A paracompact semi-metric space which is not an M^-space, Proc. Amer. Math. Soc, 17 (1966), 868-870.
  • [28] R. W. Heath, Screenability,pointwiseparacompactness,and metrizationof Moore spaces, Canad. J. Math., 16 (1964), 763-770.
  • [29] R. W. Heath, On open mappings and certain spaces satisfyingthe first countability axiom, Fund. Math., 57 (1965), 91-96.
  • [30] R. W. Heath, Arc-wise connectedness in semi-metric spaces, Pacific J. Math., 12(1962), 1301-1319.
  • [31] R. E. Hodel, Moore spaces and w-spaces, Pacific J. Math., 38 (1971),641-652.
  • [32] R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain
  • [33] R. E. Hodel, On a theorem of ArhangeskilconcerningLindelf p-spaces, To- pology Conference, Virginia Polytechnic Institute and State University, Lecture Notes in Mathematics, 375 (1974), 120-136.
  • [34] R. E. Hodel, Spaces characterized by sequences of covers which guarantee that certain sequences have cluster points, Proceedings of the University of Houston Point Set Topology Conference, (1971), 105-114.
  • [35] R. E. Hodel, Some results in metrization theory, 1950-72, Topology Conference, Vir- ginia Polytechnic Institute and State University, Lecture Notes in Mathematics, 375 (1974), 120-136.
  • [36] R. E. Hodel, Extensions of metrization theorems to higher cardinality, to appear in Fund. Math.
  • [37] T. Ishii and T. Shiraki, Some properties of wM-spaces, Proc. Japan Acad., 47 (1971), 167-172.
  • [38] F. B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc, 43 (1937), 671-677.
  • [39] I. Juhasz, Cardinal Functionsin Topology, Mathematical Centre, Amsterdam, 1971.
  • [40] D. J. Lutzer, Semimetrizable and stratifiablespaces, General Topology and Its Applications, 1 (1971), 43-48.
  • [41] E. Michael, A note on closed maps and compact sets, Israel J. Math., 2 (1964), 173-176.
  • [42] E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc, 4 (1953), 831-838.
  • [43] E. Michael, On Nagami's -spaces and some related matters, Proceedings of the Washington State University Conference on General Topology, (1970), 13-19.
  • [44] R. L. Moore, Concerningseparability,Proc. Nat. Acad. Sci. U.S.A., 28 (1942), 56-58.
  • [45] R. L. Moore, Foundations of Point Set Theory, Amer. Math. Soc. Colloquium Publ. 13, rev. ed. 1962.
  • [46] K. Nagami, -spaces, Fund. Math., 65 (1969), 169-192.
  • [47] J. Nagata, A note on Filippotfstheorem, Proc. Japan Acad., 45 (1969), 30-33.
  • [48] J. Nagata, A contribution to the theory of metrization, J. Inst. Polytech. Osaka City Univ. Ser. A, Math., 8 (1957), 185-192.
  • [49] J. Nagata, On a necessary and sufficient condition of metrizability, J. Inst. Polytech. Osaka City Univ. Ser. A, Math., 1 (1950), 93-100.
  • [50] A. Okuyama, Some generalizationsof metric spaces, their metrizationtheorems and product theorems, Sci. Rep. Tokyo Kyoiku Daigaku, Ser. A, 9 (1967), 236-254.
  • [51] A. Okuyama, On metrizabilityof M-spaces, Proc. Japan Acad., 40 (1964), 176-179.
  • [52] C. Pixley and P. Roy, Uncompletable Moore spaces, Proceedings of the Auburn Topology Conference, (1969), 75-85.
  • [53] V. I. Ponomarev, Metrizability of a finally compact p-space with a point-countable base, Soviet Math. Dokl., 8 (1967),765-768.
  • [54] G. M. Reed, Concerning first countable spaces, II, Duke Math. J., 40 (1973),677-682.
  • [55] B. Sapirovski, On separabilityand metrizabilityof spaces with Souslin's condi- tion, Soviet Math. Dokl., 13 (1972), 1633-1638.
  • [56] F. Siwiec, On defining spaces by a weak base, Pacific J. Math., 52 (1974), 233-245.
  • [57] F. Siwiec and J. Nagata, A note on nets and metrization,Proc. Japan Acad., 44 (1968), 623-627.
  • [58] Yu. M. Smirnov, On strongly paracompactspaces, Izv. Akad. Nauk SSSR Ser. Mat., 20 (1956),253-274.
  • [59] Yu. M. Smirnov, A necessary and sufficient condition for metrizability of a topological space, Doklady Akad. Nauk SSSR (N.S.), 77 (1951), 197-200.
  • [60] Yu. M. Smirnov, On the metrizability of bicompacts decomposable into a sum of sets with countable basis, Fund. Math., 43 (1956),387-393.
  • [61] Mun-Gu Sohn and Bong Dae Choi, On quasi-complete spaces, Kyungpook Math. J., 12 (1972), 225-228.
  • [62] A. H. Stone, Metrizbilityof unions of spaces, Proc. Amer. Math. Soc, 10 (1959), 361-366.
  • [63] D. R. Traylor, Concerning metrizabilityof pointwise paracompact Moore spaces, Canad. J. Math., 16 (1964), 407-411.
  • [64] H. H. Wicke and J. M. Worrell Jr., Characterizationsof developablespaces, Canad. J. Math., 17 (1965), 820-830.