Pacific Journal of Mathematics

On the equivalence of two types of oscillation for elliptic operators.

W. Allegretto

Article information

Source
Pacific J. Math., Volume 55, Number 2 (1974), 319-328.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102910968

Mathematical Reviews number (MathSciNet)
MR0374628

Zentralblatt MATH identifier
0279.35036

Subjects
Primary: 35B05: Oscillation, zeros of solutions, mean value theorems, etc.

Citation

Allegretto, W. On the equivalence of two types of oscillation for elliptic operators. Pacific J. Math. 55 (1974), no. 2, 319--328. https://projecteuclid.org/euclid.pjm/1102910968


Export citation

References

  • [1] W. Allegretto and C. A. Swanson, Oscillation criteria for elliptic systems, Proc. Amer. Math. Soc, 27 (1971), 325-330.
  • [2] W. Allegretto, A comparisontheorem fornonlinearoperators, Annali Scuola Norm. Sup. Pisa, 25 (1971), 41-46.
  • [3] W. Allegretto, Eigenvalue comparison and oscillation criteria for ellipticoperators, J. London Math. Soc, 3 (1971), 571-575.
  • [4] L. Bers, F. John, and M. Schecter, PartialDifferentialEquations,Wiley (Inter- science), New York, 1964.
  • [5] A. Friedman, Partial DifferentialEquations, Holt Rinehart and Winston, New York, 1969.
  • [6] I. M. Glazman, On the negative part of the spectrum of one-dimensionaland multi-dimensionaldifferentialoperators on vector-functions, Dokl. Akad. Nauk SSSR (N.S.), 119 (1958), 421-424.
  • [7] V. B. Headley and C. A. Swanson, Oscillation criteriaforellipticequations, Pacific J. Math., 29 (1968), 501-506.
  • [8] K. Kreith, Oscillation theorems for elliptic equations,Proc. Amer. Math. Soc, 15 (1964), 341-344.
  • [9] K. Kreith, OscillationTheory, Lecture Notes in Mathematics, Vol. 324, Springer- Verlag, Berlin, 1973.
  • [10] K. Kreith, A remark on a comparison theorem of Swanson, Proc Amer. Math. Soc, 20 (1969), 549-550.
  • [11] L. M. Kuks, Sturmystheorem and oscillation of solutions of stronglyelliptic systems, Soviet Math. Dokl., 3 (1962), 24-27.
  • [12] S. G. Mikhlin, The Problem of the Minimum of a Quadratic Functional, Holden- Day, San Francisco, 1965.
  • [13] G. Stampacchia, Equations Elliptiques du Second Order a Coefficients Discontinus, Les Presses de Universit de Montral, 1966.
  • [14] C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equa- tions, Mathematics in Science and Engineering, Vol. 48, Academic Press, New York, 1968.
  • [15] C. A. Swanson,Nonoscillation criteria for elliptic equations, Canad. Math. Bull., 12 (1969), 275-280.
  • [16] C. A. Swanson, Comparison theorems for elliptic differential systems, Pacific J. Math., 33 (1970), 445-450.