Pacific Journal of Mathematics

On solvability of generalized orthomodular lattices.

Ladislav Beran

Article information

Source
Pacific J. Math., Volume 57, Number 2 (1975), 331-337.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102905987

Mathematical Reviews number (MathSciNet)
MR0389692

Zentralblatt MATH identifier
0318.06009

Subjects
Primary: 06A30

Citation

Beran, Ladislav. On solvability of generalized orthomodular lattices. Pacific J. Math. 57 (1975), no. 2, 331--337. https://projecteuclid.org/euclid.pjm/1102905987


Export citation

References

  • [1] L. Beran, Treillis sous-modulaires, Seminaire Dubreil-Pisot:Algebre et theorie des nombres, Fac. Sci. Paris, 21e annee, (1967/68), n 13, p. 13.01-13.17.
  • [2] L. Beran, Modularityin generalized orthomodular lattices, Comment. Math. Univ. Carolinae 15, No. 1 (1974), 189-193.
  • [3] L. Beran, Reflectionand coreflection in generalizedorthomodularlattices (to appear).
  • [4] G. Birkhoff, LatticeTheory, Amer. Math. Soc. Colloq. Publ. Vol. XXV, Providence, R. I. (1967).
  • [5] R. P. Dilworth, The structure of relatively complemented lattices, Ann. of Math., 51 (1950), 348-359.
  • [6] G. Gratzer, LatticeTheory(First Concepts and DistributiveLattices),W. H. Freeman, San Francisco 1971.
  • [7] G. Gratzer, LatticeTheory (Second Part) (to appear).
  • [8] E. L. Marsden, Jr., The commutator and solvability in a generalized orthomodular lattice, Pacific J. Math., 33 (1970), 357-361.
  • [9] R. Wille, Primitive subsets of lattices, Algebra Universalis, 2 (1972), 95-98.