Pacific Journal of Mathematics

On the structure of the Fourier-Stieltjes algebra.

Martin E. Walter

Article information

Source
Pacific J. Math., Volume 58, Number 1 (1975), 267-281.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102905857

Mathematical Reviews number (MathSciNet)
MR0425008

Zentralblatt MATH identifier
0303.43014

Subjects
Primary: 22D15: Group algebras of locally compact groups
Secondary: 46L25

Citation

Walter, Martin E. On the structure of the Fourier-Stieltjes algebra. Pacific J. Math. 58 (1975), no. 1, 267--281. https://projecteuclid.org/euclid.pjm/1102905857


Export citation

References

  • [1] H. Araki, A Radon-Nikodym theorem for W*-algebras with chain rule, Queen's--Math, preprint, 1972.
  • [2] A. Connes, C. R. Acad. Sc. Paris, 274 (1972), 1923-1926.
  • [3] J. Dixmier, Les C*-algebres et leurs Representations, Gauthier-Villars, Paris, 1964.
  • [4] J. Dixmier, Les Algebres d'Operateurs dans Espace Hilbertien, Gauthier-Villars, deuxieme edition, Gauthier-Villars, Paris, 1969.
  • [5] P. Eymard, L'algebre de Fourier d'un groupe localement compact, Bull. Soc.Math.France,92 (1964), 181-236.
  • [6] U. Haagerup, The standard form of von Neumann algebras, Kobenhavns Universitet Math, preprint No. 15,1973.
  • [7] C. S. Herz, Remarques sur la note precedente de M. Varopolus, C. R. Acad. Sc. Paris, 260 (1965),6001-6004.
  • [8] C. S. Herz, La rapport entre algebre A d'un groupe et d'un sous-groupe, C. R. Acad. Sc.Paris, 271 (1970), 244-246.
  • [9] I. E. Segal, A non commutative extension of abstract integration, Ann. of Math., 57 (1953), 401-457.
  • [10] W. F. Stinespring, Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math, soc, 90 (1959), 15-56.
  • [11] M. Takesaki, Tomita's Theory of Modular Hubert Algebras and Its Applications, Springer- Verlag, Berlin, 1970.
  • [12] M. Takesaki, Lectures on Operator Algebras, U.C.L.A. Lecture Notes, 1970.
  • [13] N. Tatsuuma, Prime ideals in the dual objects of locally compact groups, Proc. Japan Acad.,
  • [14] J. L. Taylor, Inverses, logathms, and idempotents, in M(G), Rocky Mountain J. Math., 2 (1972), 183-206.
  • [15] J. L. Taylor, Measure Algebras, notes from N.S.F. regional conference on measure algebras, Univ. of Montana, 1972.
  • [16] M.Tomita, Standard forms of von Neumann algebras, the Vth functional analysis symposium of the Mathematical Society of Japan, Sendai, (1967).
  • [17] M. E. Walter, W*-algebras and non-abelian harmonic analysis, J. Functional Analysis, 11 (1972), 17-38.
  • [18] M. E. Walter,A duality between locally compact groups and certain Banach algebras,J. Functional analysis, (to appear).