Pacific Journal of Mathematics

Whitney continua in the hyperspace $C(X)$.

James T. Rogers, Jr.

Article information

Source
Pacific J. Math., Volume 58, Number 2 (1975), 569-584.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102905690

Mathematical Reviews number (MathSciNet)
MR0383372

Zentralblatt MATH identifier
0322.54016

Subjects
Primary: 54F20
Secondary: 54B20: Hyperspaces

Citation

Rogers, James T. Whitney continua in the hyperspace $C(X)$. Pacific J. Math. 58 (1975), no. 2, 569--584. https://projecteuclid.org/euclid.pjm/1102905690


Export citation

References

  • [1] R. H. Bing, Embedding circle-like continua in the plane, Canad.J. Math., 14(1962), 113-128.
  • [2] R. H. Bing, Snake-like continua, Duke Math. J., 18 (1951), 653-663.
  • [3] C. E. Burgess, Chainable continua and indecomposability,Pacific J. Math., 9 (1959), 653-659.
  • [4] Howard Cook, Upper semi-continuous continuum-valued mappings onto circle-like continua, Fund. Math., 60 (1967), 233-238.
  • [5] Carl Eberhart and Sam Nadler, The dimension of certain hyperspaces, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 19 (1971), 1027-1034.
  • [6] L. Fearnley, Classification of all hereditarily indecomposable circularly chainable continua, Trans. Amer. Math. Soc, 168 (1972), 387-401.
  • [7] M. K. Fort, Jr., and Jack Segal, Minimal representations of the hyperspace of a continuum, Duke Math. J., 32 (1965), 129-138.
  • [8] W. T. Ingram, Concerning nonplanar, circle-like continua, Canad.J. Math., 19(1967), 242-250.
  • [9] J. L. Kelley, Hyperspacesof a continuum, Trans. Amer. Math. Soc, 52 (1942), 22-36.
  • [10] J. Krasinkiewicz, Hyperspacesof arc-like and circle-like continua, preprint.
  • [11] M. C. McCord,Embedding P-like compacta in manifolds, Canad.J. Math., 19 (1967), 321-332.
  • [12] J. T. Rogers, Jr., The cone= hyperspace property, Canad. J. Math., 24 (1972), 279-285.
  • [13] J. T. Rogers, Continua with cones homeomorphic to hyperspaces, Gen. Topology and its Applica- tions, 3 (1973), 283-289.
  • [14] J. T. Rogers, The pseudo-circle is not homogeneous, Trans. Amer. Math. Soc, 148 (1970), 417-428.
  • [15] Jack Segal, Hyperspaces of the inverse limit space, Proc. Amer. Math. Soc, 10 (1959), 706-709.
  • [16] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
  • [17] R. L. Wilder, Topology of Manifolds, Amer. Math. Soc, Colloquium Publications, 32, New York, 1949.