Pacific Journal of Mathematics

The universal flip matrix and the generalized faro-shuffle.

Robert E. Hartwig and S. Brent Morris

Article information

Source
Pacific J. Math., Volume 58, Number 2 (1975), 445-455.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102905676

Mathematical Reviews number (MathSciNet)
MR0387326

Zentralblatt MATH identifier
0316.15013

Subjects
Primary: 15A69: Multilinear algebra, tensor products

Citation

Hartwig, Robert E.; Morris, S. Brent. The universal flip matrix and the generalized faro-shuffle. Pacific J. Math. 58 (1975), no. 2, 445--455. https://projecteuclid.org/euclid.pjm/1102905676


Export citation

References

  • [1] A. Elmsley, Mathematics of the Weaveshuffle, The Pentagram,11, # 9,(1957),70-71,11, # 10, (1957), 77-79, 11, #11 (1957), 85.
  • [2] S. W. Golomb, Permutations by cutting and shufflling, SIAM Rev. #4 (1961), 293-297.
  • [3] F. R. Grantmacher,The theory of Matrices, vol. 1,2 Chelsea, N. Y. 1960.
  • [4] R. E. Hartwig, The resultant and the matrix equation AX = XB, SIAM J. Appl. Math., 22 (1972), 538-544.
  • [5] I. N. Herstein, Topics in Algebra, Ginn and Co. Mass., 1964.
  • [6] K. Hoffman and R. Kunze, Linear Algebra, Prentice Hall, N. J. 1971.
  • [7] C. C. MacDuffee, The Theory of Matrices, Chelsea, N. Y.
  • [8] N. H. McCoy, Rings and Ideals, Cams Monogrpahs # 8
  • [9] S. B. Morris, The basic mathematics of the Faro-shuffle, to be published in Pi Mu Epsilon J.
  • [10] S. B. Morris, The generalized Faro-shuffle, to be published.
  • [11] H. Neudecker, A note on the Kronecker matrix products and matrix equation systems, SIAM J. Appl. Math., 17 (1969), 603-606.
  • [12] W. E. Roth, On direct Product matrices, Bull. Amer. Math. Soc, 40 (1934), 461-468.