Pacific Journal of Mathematics

Characters and Schur indices of the unitary reflection group $[321]^3$.

Mark Benard

Article information

Source
Pacific J. Math., Volume 58, Number 2 (1975), 309-321.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102905662

Mathematical Reviews number (MathSciNet)
MR0382423

Zentralblatt MATH identifier
0312.20005

Subjects
Primary: 20C30: Representations of finite symmetric groups

Citation

Benard, Mark. Characters and Schur indices of the unitary reflection group $[321]^3$. Pacific J. Math. 58 (1975), no. 2, 309--321. https://projecteuclid.org/euclid.pjm/1102905662


Export citation

References

  • [1] M. Benard, On the Schur indices of the exceptional Weyl groups, Annals of Math.,94 (1971), 89-107.
  • [2] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 2nd Edition, Springer-Verlag, New York, 1965.
  • [3] C. W. Curtis and I. Reiner, RepresentationTheory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
  • [4] W. Feit, Charactersof Finite Groups, Benjamin, New York, 1967.
  • [5] J. S. Frame, The simple group of order 25920, Duke J. Math., 2 (1936), 477-484.
  • [6] C. M. Hamill, On a finite group of order 6, 531, 840, Proc. London Math. Soc, (2), 52 (1951), 401-454.
  • [7] H. H. Mitchell, Determinationof all primitive collineationgroups in more than four variables whichcontain homologies,Amer. J. Math., 36 (1914), 1-12.
  • [8] I. Schur, Uberdie rationalenDarstellungen der allgemeinen linearenGruppe,Sitzber. Preuss. Akad. Wiss., (1927), 58-75.
  • [9] G.C. Shephard, Unitary groupsgenerated by reflections, Canad.J. Math.,5 (1953),364-383.
  • [10] G. C. Shephard and J. A. Todd, Finite unitary reflectiongroups, Canad. J. Math., 6 (1954), 274-304.
  • [11] J. A. Todd, The invariants of a finite collineationgroup in 5 dimensions, Proc. Camb. Phil. Soc, 46 (1950), 73-90.
  • [12] J. A. Todd, The charactersof a collineation groupin 5 dimensions, Proc. Royal Soc. of London, (A) 200 (1950), 320-336.