Pacific Journal of Mathematics

Positive linear functions, integration, and Choquet's theorem.

Richard C. Metzler

Article information

Source
Pacific J. Math., Volume 60, Number 1 (1975), 277-296.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102868639

Mathematical Reviews number (MathSciNet)
MR0382582

Zentralblatt MATH identifier
0312.28006

Subjects
Primary: 28A30

Citation

Metzler, Richard C. Positive linear functions, integration, and Choquet's theorem. Pacific J. Math. 60 (1975), no. 1, 277--296. https://projecteuclid.org/euclid.pjm/1102868639


Export citation

References

  • [1] E. M.Alfsen, Order Theoretic Foundations of Integration. Math.Ann., 149 (1963),419-461.
  • [2] N. Bourbaki, Integration, Ch. I-IV, Elem. de Math. Livre VI, Act. Sci. et Ind., No. 1175, Hermann et Cie, Paris (1952).
  • [3] N. Bourbaki, Integration, Ch. V, Elem. de Math. Livre VI, Act. Sci. et Ind., No. 1244, Hermannet Cie, Paris (1956).
  • [4] N. Bourbaki, Integration, Ch. VI, Elem. de Math. Livre VI, Act. Sci. et Ind.,No. 1281, Hermannet Cie, Paris (1959).
  • [5] R. DeMarr, Partially Ordered Linear Spaces and Locally Convex Linear Topological Spaces. Illinois J. Math., 8, No. 4, (1964), 601-606.
  • [6] J. Kelley and I. Namioka, Linear Topological Spaces. D. Van Nostrand Co. Inc., Princeton, N. J. (1963).
  • [7] E. McShane, Order-preserving Maps and Integration Processes. Annals of Math. Study No. 31, Princeton Univ. Press, Princeton, New Jersey.
  • [8] P. A. Meyer, Probability and Potentials. Blaisdell, Waltham, Mass. (1966).
  • [9] H. Royden, Real Analysis, MacMillan, New York (1968).
  • [10] I. Segal, and R. Kunze, Integrals and Operators, McGraw-Hill, New York (1968).