Pacific Journal of Mathematics

Rings with quasi-projective left ideals.

S. K. Jain and Surjeet Singh

Article information

Source
Pacific J. Math., Volume 60, Number 1 (1975), 169-181.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102868632

Mathematical Reviews number (MathSciNet)
MR0379591

Zentralblatt MATH identifier
0326.16022

Subjects
Primary: 16A50

Citation

Jain, S. K.; Singh, Surjeet. Rings with quasi-projective left ideals. Pacific J. Math. 60 (1975), no. 1, 169--181. https://projecteuclid.org/euclid.pjm/1102868632


Export citation

References

  • [1] J. Ahsan, Rings all of whose cyclic modules are quasi-injective, Proc. London Math. Soc, 27 (1973), 425-443.
  • [2] M.Auslander, On the dimension of modules and algebras III, global dimension, Nagoya Math. J., 9 (1955), 67-77.
  • [3] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc,95 (1960), 466-488.
  • [4] C. Faith, Algebra-Rings, Modules and Categories J., Springer Verlag (1973).
  • [5] K. Fuller, Generalized uniserial rings and their Kupisch Series, Math. Zeitschr., 106 (1968), 248-260.
  • [6] S.K. Jain, S. Mohamed, andS. Singh, Rings in which every right ideal is quasi-injective, Pacific J. Math., 31 (1969), 73-79.
  • [7] R. E.Johnson andE.T. Wong, Quasi-injective modules and irreducible rings,J. London Math. Soc, 36 (1961), 260-268.
  • [8] G. Klatt and L. Levy, Pre-self-injective rings,Trans.Amer. Math. Soc, 137 (1969), 407-419.
  • [9] A. Koehler, Rings with quasi-injective cyclic modules, Quart. J. Math. Oxford, Ser.2 (1974), 51-55.
  • [10] A. Koehler, Quasi-projective and quasi-injective modules, Pacific J. Math., 36 (1971), 713-720.
  • [11] L. Levy, Commutative ringswhose homomorphic imagesareself-injective, Pacific J. Math.,18 (1966), 149-153.
  • [12] Y. Miyashita, Quasi-projective modules,perfectmodules,and a theorem for modular lattices, J. Fac. Sci. Hokkaido University, Ser. 1 19 (1966), 86-110.
  • [13] K. Rangaswamy and N. Vaneja, Quasi-projectives inabelianand modulecategories, Pacific J. Math., 43 (1972), 221-238.
  • [14] L. Wu and J. Jans, On quasi-projectives,Illinois J. Math., 11 (1967), 439-448.