Pacific Journal of Mathematics

Strongly semiprime rings.

D. Handelman

Article information

Source
Pacific J. Math., Volume 60, Number 1 (1975), 115-122.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102868629

Mathematical Reviews number (MathSciNet)
MR0389956

Zentralblatt MATH identifier
0307.16004

Subjects
Primary: 16A12

Citation

Handelman, D. Strongly semiprime rings. Pacific J. Math. 60 (1975), no. 1, 115--122. https://projecteuclid.org/euclid.pjm/1102868629


Export citation

References

  • [1] J. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, preprint.
  • [2] O. Goldman, Rings and modules of quotients, J. Algebra, 13 (1969), 10-47.
  • [3] D. Handelman, When is the maximal ring of quotients projective?, to appear, Proc. Amer. Math. Soc.
  • [4] D. Handelman, Prime regular rings of quotients to appear, Comm. in Algebra.
  • [5] D. Handelman and J. Lawrence, Strongly prime rings to appear, Trans. Amer. Math. Soc.
  • [6] K. Goodearl, D. Handelman and J. Lawrence, Strongly Prime and CompletelyTorsion-Free Rings, Monograph, Carleton University Press (1974).
  • [7] J. Lambek, Lectures on Rings and Modules, Blaisdell (1966) Waltham, Mass.
  • [8] J. Lambek, Torsion Theories, Additive Semantics and Rings of Quotients, Springer-Verlag # 177 (1971).
  • [9] L. Levy, Unique direct sums of prime rings, Trans. Amer. Math. Soc, 106 (1963), 64-76.
  • [10] R. Rubin, Absolutely Torsion-free rings, Pacific J. Math., 46 (1973), 503-14.
  • [11] R. Rubin, Essentially torsion-free rings, preprint.
  • [12] J. Viola-Prioli, On absolutely torsion-free rings and kernel functors, Ph.D. thesis (June 1973), Rutgers University, New Brunswick, New Jersey.