Pacific Journal of Mathematics

Compact subsets of a Tychonoff set.

Geoffrey Fox and Pedro Morales

Article information

Source
Pacific J. Math., Volume 60, Number 1 (1975), 75-79.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102868624

Mathematical Reviews number (MathSciNet)
MR0385800

Zentralblatt MATH identifier
0328.54011

Subjects
Primary: 54C60: Set-valued maps [See also 26E25, 28B20, 47H04, 58C06]

Citation

Fox, Geoffrey; Morales, Pedro. Compact subsets of a Tychonoff set. Pacific J. Math. 60 (1975), no. 1, 75--79. https://projecteuclid.org/euclid.pjm/1102868624


Export citation

References

  • [1] C. Berge, Topological Spaces, The MacMillan Company, New York (1965).
  • [2] G. Fox and P. Morales, A general Tychonoff theorem for multifunctions, to appear in Canad. Math. Bull.
  • [3] R. H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc, 51 (1945), 429-432.
  • [4] J. Kelley, General Topology, D. Van Nostrand, New York (1965).
  • [5] Y. F. Lin, Tychonoff"s theorem for the space of multifunctions, Amer. Math. Monthly, 74 (1967), 399-400.
  • [6] Y. F. Lin and D. A. Rose, Ascoli theorem for spaces of multifunctions, Pacific J. Math., 34 (1970), 741-747.
  • [7] N. Noble, Ascoli theorems and the exponential map, Trans. Amer. Math. Soc, 143 (1969), 393-411.
  • [8] R. E. Smithson, Topologies on sets of relations, J. Nat. Sci. and Math. (Lahore), 11 (1971), 43-50.
  • [9] R. E. Smithson, Multifunction, Nieuw. Arch. Wisk., 20 (1972), 31-53.
  • [10] W. L. Strother, Continuous multi-valued functions, Bol. Soc. Mat. Sao Paulo, 10 (1955), 87-120.
  • [11] J. D. Weston, A generalization of Ascoli's theorem, Mathematika, 6 (1959), 19-24.