Pacific Journal of Mathematics

On subrings of rings with involution.

Pjek Hwee Lee

Article information

Source
Pacific J. Math., Volume 60, Number 2 (1975), 131-147.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102868441

Mathematical Reviews number (MathSciNet)
MR0396657

Zentralblatt MATH identifier
0324.16013

Subjects
Primary: 16A28

Citation

Lee, Pjek Hwee. On subrings of rings with involution. Pacific J. Math. 60 (1975), no. 2, 131--147. https://projecteuclid.org/euclid.pjm/1102868441


Export citation

References

  • [1] S. A. Amitsur, Identities in rings with involution, Israel J. Math., 7 (1969), 63-68.
  • [2] W. E. Baxter and W. S. Martindale III, Rings with involution and polynomial identities, Canad. J. Math., 20 (1968),- 465-473.
  • [3] J. Dieudonne, On the structure of unitary groups. Trans. Amer. Math.Soc, 72 (1952), 367-385.
  • [4] I. N. Herstein, Lie and Jordan systems in simple rings with involution, Amer. J. Math., 78 (1956), 629-649.
  • [5] I. N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago, 1966.
  • [6] I. N. Herstein, NoncotnmutativeRings, Cams Monograph, 15, Math. Assn. Amer., 1968.
  • [7] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloquium Publication 37, 1964.
  • [8] N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloquium Publication 39, 1968.
  • [9] C. Lanski, On the relationship of a ring and the subring generated by its symmetric elements, Pacific J. Math., 44 (1973), 581-592.
  • [10] C. Lanski, Chain conditions in rings with involutions, J. London Math. Soc, to appear.
  • [11] W. S. Martindale III, Rings with involution and polynomial identities, J. Algebra, 11 (1969), 186-194.
  • [12] S. Montgomery, Lie structure of simple rings of characteristic 2, J. Algebra, 15 (1970), 387-407.
  • [13] K. R. Nagarajan, Groups acting on noetherian rings,Niew Arch. Wiskunde, 16 (1968), 25-29.