Pacific Journal of Mathematics

Ordered Gleason parts.

H. S. Bear

Article information

Source
Pacific J. Math., Volume 62, Number 2 (1976), 337-349.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102867720

Mathematical Reviews number (MathSciNet)
MR0420238

Zentralblatt MATH identifier
0323.46055

Subjects
Primary: 46E15: Banach spaces of continuous, differentiable or analytic functions
Secondary: 31B05: Harmonic, subharmonic, superharmonic functions

Citation

Bear, H. S. Ordered Gleason parts. Pacific J. Math. 62 (1976), no. 2, 337--349. https://projecteuclid.org/euclid.pjm/1102867720


Export citation

References

  • [1] H. S. Bear, A geometric characterization of Gleason parts, P.A.M.S., 16(1965), 407-412.
  • [2] H. S. Bear, A strict maximum theoremforone-part function spaces andalgebras,Bull. Amer. Math. Soc, 70 (1964), 642-643.
  • [3] H. S. Bear, Lectures on Gleason Parts, Lecture Notes inMathematicsNo. 121, Springer Verlag, New York, 1970.
  • [4] H.S.Bear and A. M.Gleason, A glolal integral representationforabstract harmonicfunctions, J. Math. Mech., 16 (1967), 639-654.
  • [5] H.S. Bear and Bertram Walsh, Integral kernel for one-part function spaces, Pacific J. Math., 23 (1967), 209-215.
  • [6] H. S. Bear andM. L. Weiss, An intrinsic metric for parts, P.A.M.S., 18 (1967), 812-817.
  • [7] H. S. Bear, An Abstract potential theory with continuous kernel, Pacific J. Math., 14 (1964), 407-420.
  • [8] A. M. Gleason, Function algebras, Seminar on Analytic Functions, vol. 2,Institutefor Advanced Study, Princeton,1957.
  • [9] J. Hadamard, Extension a equation de la chaleurd'un thoreme de A. Harnack, Rend, del Circ. Mat. di Palermo, (2), 3 (1954), 337-346.
  • [10] Philip Hartman and Aurel Wintner, On the solutions of the equation of heat conduction, Amer. J. Math., 72 (1950), 367-395.
  • [11] Fritz John, Partial Differential Equations, Springer Verlag, New York, 1971.
  • [12] L. Nirenberg, A strong maximum principle for parabolic equations, Comm. on Pure and Appl. Math., 6 (1953), 167-177.
  • [13] I. G. Petrovskii, Partial Differential Equations, W. B. Saunders Co., Philadelphia, 1967.
  • [14] B. Pini, Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico, Rend., Sem. Mat. Univ. Padua, 23 (1954), 422-434.
  • [15] Murray H. Protter and Hans F. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, New Jersey, 1967.

See also

  • Corr : H. S. Bear. Corrections to: ``Ordered Gleason parts''. Pacific Journal of Mathematics volume 73, issue 2, (1977), pp. 539-540.