Pacific Journal of Mathematics

Some results on normality of a graded ring.

Wei Eihn Kuan

Article information

Source
Pacific J. Math., Volume 64, Number 2 (1976), 455-463.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102867098

Mathematical Reviews number (MathSciNet)
MR0427294

Zentralblatt MATH identifier
0338.13008

Subjects
Primary: 13A15: Ideals; multiplicative ideal theory

Citation

Kuan, Wei Eihn. Some results on normality of a graded ring. Pacific J. Math. 64 (1976), no. 2, 455--463. https://projecteuclid.org/euclid.pjm/1102867098


Export citation

References

  • [1] A. Grothendieck,J. Dieudonne, Elements de Geometrie lgebrique II, IV Inst. Hautes Etudes Sci. Publ. Math. No. 8 (1961), No. 20 (1964).
  • [2] A. Grothendieck, Elements de Geometrie lgebrique I, Springer-Verlag, Berlin-Heidelberg-New York (1971).
  • [3] R. Hartshorne, Introduction to Algebraic Geometry, Chapter III, Lecture Notes, University of California, Berkeley (1973).
  • [4] S. Lang, Introduction to Algebraic Geometry, Interscience, New York (1964).
  • [5] H. Matsumura, Commutative Algebra, W. A. Benjamin Inc., New York (1970).
  • [6] M. Nagata, A general theory of algebraic geometry over Dedekind domains II, Amer. J. Math., 80 (1958), pp. 382-420.
  • [7] M. Nagata, Local rings, Interscience, New York, 1962.
  • [8] Y. Nakai, On the arithmetic normality of hyperplane sections of algebraic varieties, Memoirs of the College of Science, University of Kyoto, Series A, 29 (1955), 159-163, Corrections, 30 (1957), 201.
  • [9] A. Seidenberg, The hyperplane sections of arithmetically normal varieties, Amer. J. Math., 94 (1972), 609-630.
  • [10] O. Zariski, P. Sammuel, Commutative Algebra II, Van Nostrand, Princeton-Toronto-London- New York (1960).