Pacific Journal of Mathematics

Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations.

L. Erbe

Article information

Source
Pacific J. Math., Volume 64, Number 2 (1976), 369-385.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102867093

Mathematical Reviews number (MathSciNet)
MR0435508

Zentralblatt MATH identifier
0339.34030

Subjects
Primary: 34C10: Oscillation theory, zeros, disconjugacy and comparison theory

Citation

Erbe, L. Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations. Pacific J. Math. 64 (1976), no. 2, 369--385. https://projecteuclid.org/euclid.pjm/1102867093


Export citation

References

  • [1] J. H. Barrett, Oscillation theory of ordinary linear differential equations, Advances in Math., 3 (1969), 415-509.
  • [2] L. Erbe, Disconjugacy conditions for the third order linear differential equation, Canad. Math. Bull., 12 (1969), 603-613.
  • [3] L. Erbe, Boundary value problems for ordinary differential equations, Rocky Mountain J. Math., 1 (1971), 709-729.
  • [4] G. J. Etgen and C. D. Shih, Disconjugacy and oscillation of third order differential equations with nonnegative coefficients, Proc. Amer. Math. Soc, 38 (1973), 577-582.
  • [5] G. J. Etgen and C. D. Shih, On the oscillation of certain third order linear differential equations, Proc. Amer. Math. Soc, 41 (1973), 151-155.
  • [6] G. J. Etgen and C. D. Shih, Conditions for the nonoscillation of third order differential equations with nonnegative coefficients, SIAM J. Math. Anal., 6 (1975), 1-8.
  • [7] M. Gera, Uber einige Eigenschaften der Lsungen der Gleichung x'" + a(t)x" + b(t)x' + c(t)x = 0, c()i=0, Mat. Cas., 24 (1974), 357-370.
  • [8] M. Gera, Bedingungen fur die Existenz oszillatorischer Lsungen der Gleichung, JC'"+ a(t)x" + b(t)x'+c{t)x =0, c()i?0, Mat. Cas., 25 (1975), 23-40.
  • [9] T. G. Hallam, Asymptotic behavior of the solutions of an nth order nonhomogeneous ordinary differential equation, Trans. Amer. Math. Soc, 122 (1966), 177-194.
  • [10] M. Hanan, Oscillation criteria for third order differential equations, Pacific J. Math., 11 (1961), 919-944.
  • [11] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.
  • [12] J. Heidel, Qualitative behavior of solutions of a third order nonlinear differential equation, Pacific J. Math., 27 (1968), 507-526.
  • [13] L. K. Jackson, Subfunctions and second order ordinary differential inequalities, Advances in Math., 2 (1968), 307-363.
  • [14] G. D. Jones, Properties of solutions of a class of third order differential equations, J. Math. Anal. Appl., 48 (1974), 165-169.
  • [15] G. D. Jones, An asymptotic property of solutions ofy'" + py' + qy =0, Pacific J. Math., 48 (1973), 135-138.
  • [16] W. J. Kim, Oscillatory properties of linear third order differential equations, Proc. Amer. Math. Soc, 26 (1970), 286-293.
  • [17] A. C. Lazer, The behavior of solutions of the differential equation y" + p{x)y' + q(x)y=0, Pacific J. Math., 17 (1966), 435-466.
  • [18] C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York, 1968.